Промежуток на окружности от 7п 2 до 2п

Отбор корней в тригонометрическом уравнение

В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.

а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]

Решим пункт а.

Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)

sqrt(2)cos^2x — cosx = 0

cosx(sqrt(2)cosx — 1) = 0

x1 = Pi/2 + Pin, n ∈ Z

sqrt(2)cosx — 1 = 0

x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z

x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z

Решим пункт б.

1) Отбор корней с помощью неравенств

Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.

-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi

Сразу делим все на Pi

-7/2 меньше или равно 1/2 + n меньше или равно -2

-7/2 — 1/2 меньше или равно n меньше или равно -2 — 1/2

-4 меньше или равно n меньше или равно -5/2

Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2

Аналогично делаем еще два неравенства

-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8

Целых n в этом промежутке нет

-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8

Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.

Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4

2) Отбор корней с помощью тригонометрической окружности

Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.

Обойдем раз против часовой стрелки

Обойдем 2 раза против часовой стрелки

Обойдем 1 раз по часовой стрелки (значения будут отрицательные)

Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]

Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.

Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 — 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 — 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 — 4Pi = -7Pi/2, также подходит.

Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.

Сравнение двух методов.

Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.

Видео:Три способа отбора корней в задании 13 ЕГЭ профильСкачать

Три способа отбора корней в задании 13 ЕГЭ профиль

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • Промежуток на окружности от 7п 2 до 2п

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:Как искать точки на тригонометрической окружности.Скачать

    Как искать точки на тригонометрической окружности.

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:Отбор корней по окружностиСкачать

    Отбор корней по окружности

    Как обозначать числа с пи на числовой окружности?

    Надеюсь, вы уже прочитали про числовую окружность и знаете, почему она называется числовой, где на ней начало координат и в какой стороне положительное направление. Если нет, то бегом читать ! Если вы, конечно, собираетесь находить точки на числовой окружности.

    Видео:КОГДА ПИСАТЬ +Пк, а когда +2Пк? (Задание 13 по Тригонометрии ЕГЭ 2024 по Математике Профиль)Скачать

    КОГДА ПИСАТЬ +Пк, а когда +2Пк? (Задание 13 по Тригонометрии ЕГЭ 2024 по Математике Профиль)

    Обозначаем числа (2π), (π), (frac), (-frac), (frac)

    Как вы знаете из прошлой статьи, радиус числовой окружности равен (1). Значит, длина окружности равняется (2π) (вычислили по формуле (l=2πR)). С учетом этого отметим (2π) на числовой окружности. Чтобы отметить это число нужно пройти от (0) по числовой окружности расстояние равно (2π) в положительном направлении, а так как длина окружности (2π), то получается, что мы сделаем полный оборот. То есть, числу (2π) и (0) соответствует одна и та же точка. Не переживайте, несколько значений для одной точки — это нормально для числовой окружности.

    Промежуток на окружности от 7п 2 до 2п

    Теперь обозначим на числовой окружности число (π). (π) – это половина от (2π). Таким образом, чтобы отметить это число и соответствующую ему точку, нужно пройти от (0) в положительном направлении половину окружности.

    Промежуток на окружности от 7п 2 до 2п

    Отметим точку (frac) . (frac) – это половина от (π), следовательно чтобы отметить это число, нужно от (0) пройти в положительном направлении расстояние равное половине (π), то есть четверть окружности.

    Промежуток на окружности от 7п 2 до 2п

    Обозначим на окружности точки (-) (frac) . Двигаемся на такое же расстояние, как в прошлый раз, но в отрицательном направлении.

    Промежуток на окружности от 7п 2 до 2п

    Нанесем (-π). Для этого пройдем расстояние равное половине окружности в отрицательном направлении.

    Промежуток на окружности от 7п 2 до 2п

    Теперь рассмотрим пример посложнее. Отметим на окружности число (frac) . Для этого дробь (frac) переведем в смешанный вид (frac) (=1) (frac) , т.е. (frac) (=π+) (frac) . Значит, нужно от (0) в положительную сторону пройти расстояние в пол окружности и еще в четверть.

    Промежуток на окружности от 7п 2 до 2п

    Задание 1. Отметьте на числовой окружности точки (-2π),(-) (frac) .

    Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

    Обозначаем числа (frac), (frac), (frac)

    Выше мы нашли значения в точках пересечения числовой окружности с осями (x) и (y). Теперь определим положение промежуточных точек. Для начала нанесем точки (frac) , (frac) и (frac) .
    (frac) – это половина от (frac) (то есть, (frac) (=) (frac) (:2)) , поэтому расстояние (frac) – это половина четверти окружности.

    Промежуток на окружности от 7п 2 до 2п

    (frac) – это треть от (π) (иначе говоря, (frac) (=π:3)), поэтому расстояние (frac) – это треть от полукруга.

    Промежуток на окружности от 7п 2 до 2п

    (frac) – это половина (frac) (ведь (frac) (=) (frac) (:2)) поэтому расстояние (frac) – это половина от расстояния (frac) .

    Промежуток на окружности от 7п 2 до 2п

    Вот так они расположены друг относительно друга:

    Промежуток на окружности от 7п 2 до 2п

    Замечание: Расположение точек со значением (0), (frac) ,(π), (frac) , (frac) , (frac) , (frac) лучше просто запомнить. Без них числовая окружность, как компьютер без монитора, вроде бы и полезная штука, а использовать крайне неудобно.

    Разные расстояние на окружности наглядно:

    Промежуток на окружности от 7п 2 до 2пПромежуток на окружности от 7п 2 до 2п

    Промежуток на окружности от 7п 2 до 2п Промежуток на окружности от 7п 2 до 2п

    Видео:Вычисление значений тригонометрических функцийСкачать

    Вычисление значений тригонометрических функций

    Обозначаем числа (frac), (-frac), (frac)

    Обозначим на окружности точку (frac) , для этого выполним следующие преобразования: (frac) (=) (frac) (=) (frac) (+) (frac) (=π+) (frac) . Отсюда видно, что от нуля в положительную сторону надо пройти расстояние (π), а потом еще (frac) .

    Промежуток на окружности от 7п 2 до 2п

    Отметим на окружности точку (-) (frac) . Преобразовываем: (-) (frac) (=-) (frac) (-) (frac) (=-π-) (frac) . Значит надо от (0) пройти в отрицательную сторону расстояние (π) и еще (frac) .

    Промежуток на окружности от 7п 2 до 2п

    Нанесем точку (frac) , для этого преобразуем (frac) (=) (frac) (=) (frac) (-) (frac) (=2π-) (frac) . Значит, чтобы поставить точку со значением (frac) , надо от точки со значением (2π) пройти в отрицательную сторону расстояние (frac) .

    Промежуток на окружности от 7п 2 до 2п

    Видео:Тригонометрическая окружность. Как выучить?Скачать

    Тригонометрическая окружность. Как выучить?

    Обозначаем числа (10π), (-3π), (frac) ,(frac), (-frac), (-frac)

    Запишем (10π) в виде (5 cdot 2π). Вспоминаем, что (2π) – это расстояние равное длине окружности, поэтому чтобы отметить точку (10π), нужно от нуля пройти расстояние равное (5) окружностям. Нетрудно догадаться, что мы окажемся снова в точке (0), просто сделаем пять оборотов.

    Промежуток на окружности от 7п 2 до 2п

    Из этого примера можно сделать вывод:

    Числам с разницей в (2πn), где (n∈Z) (то есть (n) — любое целое число) соответствует одна и та же точка.

    То есть, чтобы поставить число со значением больше (2π) (или меньше (-2π)), надо выделить из него целое четное количество (π) ((2π), (8π), (-10π)…) и отбросить. Тем самым мы уберем из числа, не влияющие на положение точки «пустые обороты».

    Точке, которой соответствует (0), также соответствуют все четные количества (π) ((±2π),(±4π),(±6π)…).

    Теперь нанесем на окружность (-3π). (-3π=-π-2π), значит (-3π) и (–π) находятся в одном месте на окружности (так как отличаются на «пустой оборот» в (-2π)).

    Промежуток на окружности от 7п 2 до 2п

    Кстати, там же будут находиться все нечетные (π).

    Точке, которой соответствует (π), также соответствуют все нечетные количества (π) ((±π),(±3π),(±5π)…).

    Сейчас обозначим число (frac) . Как обычно, преобразовываем: (frac) (=) (frac) (+) (frac) (=3π+) (frac) (=2π+π+) (frac) . Два пи – отбрасываем, и получается что, для обозначения числа (frac) нужно от нуля в положительную сторону пройти расстояние равное (π+) (frac) (т.е. половину окружности и еще четверть).

    Промежуток на окружности от 7п 2 до 2п

    Отметим (frac) . Вновь преобразования: (frac) (=) (frac) (=) (frac) (+) (frac) (=5π+) (frac) (=4π+π+) (frac) . Ясно, что от нуля надо пройти расстояние равное (π+) (frac) – и мы найдем место точки (frac) .

    Промежуток на окружности от 7п 2 до 2п

    Нанесем на окружность число (-) (frac) .
    (-) (frac) (= -) (frac) (-) (frac) (=-10π-) (frac) . Значит, место (-) (frac) совпадает с местом числа (-) (frac) .

    Промежуток на окружности от 7п 2 до 2п

    Обозначим (-) (frac) .
    (-) (frac) (=-) (frac) (+) (frac) (=-5π+) (frac) (=-4π-π+) (frac) . Для обозначение (-) (frac) , на числовой окружности надо от точки со значением (–π) пройти в положительную сторону (frac) .

    🔥 Видео

    Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

    Математика| Преобразование тригонометрических выражений. Формулы и задачи

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

    Как отбирать корни с помощью числовой окружности? Тригонометрические уравнения Часть 6 из 6Скачать

    Как отбирать корни с помощью числовой окружности? Тригонометрические уравнения Часть 6 из 6

    Нахождение корней уравнения, принадлежащих промежуткуСкачать

    Нахождение корней уравнения, принадлежащих промежутку

    ✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис ТрушинСкачать

    ✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис Трушин

    48 Как отобрать корни ,принадлежащие промежутку, в тригонометрическом уравненииСкачать

    48 Как отобрать корни ,принадлежащие промежутку, в тригонометрическом уравнении

    Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

    Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

    Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

    Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

    ЕГЭ №9. Тригонометрические выражения.Тригонометрические уравнения | Математика | TutorOnlineСкачать

    ЕГЭ №9.  Тригонометрические выражения.Тригонометрические уравнения | Математика | TutorOnline

    ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12Скачать

    ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12

    Прототипы 26784 и 26785 задания 9 из профильного ЕГЭ sin(7π/2-α)-?,если sinα=0,8 и αϵ(π/2; π)Скачать

    Прототипы 26784 и 26785 задания 9 из профильного ЕГЭ sin(7π/2-α)-?,если sinα=0,8 и αϵ(π/2; π)

    10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

    10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства

    Как решать тригонометрические неравенства?Скачать

    Как решать тригонометрические неравенства?
    Поделиться или сохранить к себе: