Произвольный треугольник неравенство треугольника

Неравенство треугольника

Теорема 1 Любая сторона треугольника меньше суммы двух других сторон.

Доказательство. Рассмотрим произвольный треугольник ABC (Рис.1).

Произвольный треугольник неравенство треугольника

Докажем, что ( small AC lt AB+BC .) На продолжении стороны AB отложим отрезок BD равный стороне BC. Полученный треугольник BCD равнобедренный. тогда ( small angle 1= angle 2.) Рассмотрим треугольник ADC. В этом треугольнике ( small angle ACD gt angle 1 ) и учитывая, что ( small angle 1= angle 2, ) получим ( small angle ACD gt angle 2. ) По теореме 1 статьи Соотношения между сторонами и углами треугольника, против большего угла треугольника лежит большая сторона. Следовательно в треугольнике ADC имеет место неравенство:

Произвольный треугольник неравенство треугольника.(1)
Произвольный треугольник неравенство треугольника.(2)

Тогда из (1) и (2) получим:

Произвольный треугольник неравенство треугольникаПроизвольный треугольник неравенство треугольника

Следствие 1. Для любых точек A, B, C, не расположенных на одной прямой справедливы следующие неравенства:

Произвольный треугольник неравенство треугольника, Произвольный треугольник неравенство треугольника, Произвольный треугольник неравенство треугольника.(3)

Неравенства (3) называются неравенствами треугольника.

Видео:Неравенства треугольника. 7 класс.Скачать

Неравенства треугольника. 7 класс.

Неравенство треугольника — определение и вычисление с примерами решения

Содержание:

Неравенство треугольника:

Опыт нам подсказывает, что путь из точки А в точку С по прямой АС короче, чем по ломаной ABC (рис. 255), т. е. АС 12+21 (рис. 258).

Произвольный треугольник неравенство треугольника

Замечание. Из неравенств треугольника Произвольный треугольник неравенство треугольникаследует, что Произвольный треугольник неравенство треугольникато есть любая сторона треугольника больше разности двух других его сторон. Так, для стороны а справедливо Произвольный треугольник неравенство треугольника

Пример:

Внутри треугольника ABC взята точка М (рис. 259). Доказать, что периметр треугольника АМС меньше периметра треугольника ABC.

Произвольный треугольник неравенство треугольника

Решение:

Так как у треугольников ABC и АМС сторона АС — общая, то достаточно доказать, что AM + МС Произвольный треугольник неравенство треугольникаB (рис. 108, а).

2) Отложим на стороне АВ отрезок АF, равный стороне AC (рис. 108, б).

Произвольный треугольник неравенство треугольника

3) Так как АF Произвольный треугольник неравенство треугольника1.

4) Угол 2 является внешним углом треугольника ВFС, следовательно, Произвольный треугольник неравенство треугольника2 > Произвольный треугольник неравенство треугольникаB.

5) Так как треугольник FАС является равнобедренным, то Произвольный треугольник неравенство треугольника1 = Произвольный треугольник неравенство треугольника2.

Таким образом, Произвольный треугольник неравенство треугольникаBСА > Произвольный треугольник неравенство треугольника1, Произвольный треугольник неравенство треугольника1 = Произвольный треугольник неравенство треугольника2 и Произвольный треугольник неравенство треугольника2 > Произвольный треугольник неравенство треугольникаB.

Отсюда получаем, что Произвольный треугольник неравенство треугольникаВСА > Произвольный треугольник неравенство треугольникаB.

Теорема 2. В треугольнике против большего угла лежит большая сторона.

1) Пусть в треугольнике АBС Произвольный треугольник неравенство треугольникаС > Произвольный треугольник неравенство треугольникаB. Докажем, что АВ > АС (см. рис. 108, а). Доказательство проведем методом от противного.

2) Предположим, что это не так. Тогда: либо АВ = АС, либо АВ Произвольный треугольник неравенство треугольникаC.

В каждом из этих случаев получаем противоречие с условием: Произвольный треугольник неравенство треугольникаC > Произвольный треугольник неравенство треугольникаB. Таким образом, сделанное предположение неверно и, значит, АВ > АС.

Из данной теоремы следует утверждение: в прямоугольном треугольнике катет меньше гипотенузы.

Действительно, гипотенуза лежит против прямого угла, а катет — против острого. Поскольку прямой угол больше острого, то по теореме 2 получаем, что гипотенуза больше катета.

Теорема 3 (признак равнобедренного треугольника). Если два угла треугольника равны, то треугольник равнобедренный.

Пусть в треугольнике два угла равны. Тогда равны стороны, лежащие против этих углов. В самом деле, если предположить, что одна из указанных сторон больше другой, то по теореме 1 угол, лежащий против этой стороны, будет больше угла, лежащего против другой стороны, что противоречит условию равенства углов.

Значит, наше предположение неверно и в треугольнике две стороны равны, т. е. треугольник является равнобедренным.

Неравенство треугольника

Докажем, что длина каждой стороны треугольника меньше суммы длин двух других сторон.

Теорема 4. Длина каждой стороны треугольника меньше суммы длин двух других его сторон.

1) Пусть ABC — произвольный треугольник. Докажем, например, что выполняется неравенство АВ Произвольный треугольник неравенство треугольникаl, следовательно, верно неравенство Произвольный треугольник неравенство треугольникаАВF > Произвольный треугольник неравенство треугольника2.

4) Так как в треугольнике против большего угла лежит большая сторона (теорема 2), то АВ

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Неравенство треугольника. Геометрия 7 класс. Доказательство. Задачи по рисункам.Скачать

Неравенство треугольника. Геометрия 7 класс. Доказательство. Задачи по рисункам.

Неравенство треугольника

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Произвольный треугольник неравенство треугольника

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Неравенство треугольников», которая входит в школьный курс геометрии за седьмой класс. На занятии учитель познакомит с неравенством треугольника, вытекающим из теоремы о сторонах и углах треугольника.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть уроки «Связь числа и геометрии. Часть 2. Треугольники. Координаты», «Основы геометрии»

💡 Видео

7 класс, 34 урок, Неравенство треугольникаСкачать

7 класс, 34 урок, Неравенство треугольника

✓ Неравенство треугольника | Ботай со мной #126 | Борис ТрушинСкачать

✓ Неравенство треугольника | Ботай со мной #126 | Борис Трушин

Неравенство треугольникаСкачать

Неравенство треугольника

Неравенства треугольника. Практическая часть. 7 класс.Скачать

Неравенства треугольника. Практическая часть. 7 класс.

Неравенство треугольникаСкачать

Неравенство треугольника

Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)Скачать

Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)

Треугольник. Основное неравенство треугольникаСкачать

Треугольник. Основное неравенство треугольника

Неравенство треугольникаСкачать

Неравенство треугольника

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Неравенство треугольника | Геометрия 7-9 класс #34 | ИнфоурокСкачать

Неравенство треугольника | Геометрия 7-9 класс #34 | Инфоурок

Геометрия 7 класс. Треугольник. Определение, неравенство треугольника. Виды треугольников.Скачать

Геометрия 7 класс. Треугольник. Определение, неравенство треугольника. Виды треугольников.

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

ГЕОМЕТРИЯ 7 класс : Неравенство треугольника | ВидеоурокСкачать

ГЕОМЕТРИЯ 7 класс : Неравенство треугольника | Видеоурок

7. Треугольники. Часть 1. Üçbucaqlar. 1ci hissə.Скачать

7. Треугольники. Часть 1. Üçbucaqlar. 1ci hissə.

ТРЕУГОЛЬНИКИ 1. Треугольник. Неравенство треугольника. Периметр треугольникаСкачать

ТРЕУГОЛЬНИКИ 1. Треугольник.  Неравенство треугольника. Периметр треугольника

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

7. Треугольники. Часть 2. Üçbucaqlar. 2ci hissə.Скачать

7. Треугольники. Часть 2. Üçbucaqlar. 2ci hissə.
Поделиться или сохранить к себе: