Как разделить окружность на заданное количество одинаковых частей, терминология при построении окружности, деление окружности на 3, 4, 5, 6, 8, 10 частей.
- Термины при построениях окружности
- Деление окружности на 4 и 8 одинаковых частей
- Деление окружности на 3 и 6 равных частей (кратные 3 трём)
- Деление окружности на 5 и 10 равных частей
- Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)
- Нахождение центра дуги окружности
- Правила деления окружности на части
- Глава 3. Некоторые геометрические построения
- § 16. Деление окружности
- 🌟 Видео
Термины при построениях окружности
Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.
Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.
Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.
Части окружностей называются дугами.
Прямая СD, соединяющая две точки на окружности, называется хордой.
Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.
Часть круга, ограниченная хордой СD и дугой, называется сигментом.
Часть круга, ограниченная двумя радиусами и дугой, называется сектором.
Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.
Угол, образованный двумя радиусами КОА, называется центральным углом.
Два взаимно перпендикулярных радиуса составляют угол в 90 0 и ограничивают 1/4 окружности.
Видео:Деление окружности на равные части. Урок 6. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать
Деление окружности на 4 и 8 одинаковых частей
Проводим окружность с горизонтальной и вертикальной осями, которые делят её на 4-ре равные части. Проведённые с помощью циркуля или угольника под 45 0 , две взаимно перпендикулярные линии делят окружность на 8-мь равных частей.
Видео:Деление окружности на 3; 6; 12 равных частейСкачать
Деление окружности на 3 и 6 равных частей (кратные 3 трём)
Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.
Видео:Деление окружности на пять равных частей. Урок 7. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать
Деление окружности на 5 и 10 равных частей
Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки «а» в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке «b». Радиусом R3 из точки «1» проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние «b-О» даёт сторону правильного десятиугольника.
Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)
Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки «1» окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные ( или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть ( N ) равных частей.
Видео:Деление окружности на 3 равные частиСкачать
Нахождение центра дуги окружности
Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.
Видео:Деление окружности на 12 равных частейСкачать
Правила деления окружности на части
Некоторые детали машин и приборов имеют элементы, равномерно расположенные по окружности, например, детали на рис. 52—59. При выполнении чертежей подобных деталей необходимо знать правила деления окружности на равное количество частей.
Деление окружности на четыре и восемь равных частей. На рис. 52, а показана крышка, в которой имеется восемь отверстий, равномерно расположенных по окружности. При построении чертежа контура крышки (рис. 52 г) необходимо разделить окружность на восемь равных частей. Это можно сделать с помощью угольника с углами 45° (рис. 52, в), гипотенуза угольника должна проходить через центр окружности, или построением.
Два взаимно перпендикулярных диаметра окружности делят ее на четыре равные части (точки 7, 3, 5, 7 на рис. 52, б). Чтобы разделить окружность на восемь равных частей, применяют известный прием деления прямого угла с помощью циркуля на две равные части. Получают точки 2, 4, 6, 8.
Деление окружности на три, шесть и двенадцать равных частей. Во фланце (рис. 53, а) имеется три отверстия, равномерно расположенных по окружности. При выполнении чертежа контура фланца (рис. 53, г) нужно разделить окружность на три равные части.
Для нахождения точек, делящих окружность радиуса R на три равные части, достаточно из любой точки окружности, например точки А, провести дугу радиусом R. Пересечения дуги с окружностью дают две искомые точки 2 и 3; третья точка деления будет находиться на пересечении оси окружности, проведенной из точки Л, с окружностью (рис. 53, б).
Разделить окружность на три равные части можно также угольником с углами 30 и 60° (рис. 53, в), гипотенуза угольника должна проходить через центр окружности.
На рис. 54, б показано деление окружности циркулем на шесть равных частей. В этом случае выполняется то же построение, что на рис. 53, б но дугу описывают не один, а два раза, из точек и радиусом R , равным радиусу окружности.
Разделить окружность на шесть равных частей можно и угольником с углами 30 и 60° (рис. 54, в). На рис. 54, а показана крышка, при выполнении чертежа которой необходимо выполнить деление окружности на шесть частей.
Чтобы выполнить чертеж детали (рис. 55, а), которая имеет 12 отверстий, равномерно расположенных по окружностям, нужно разделить осевую окружность на 12 равных частей (рис. 55, г).
При делении окружности на 12 равных частей с помощью циркуля можно использовать тот же прием, что и при делении окружности на шесть равных частей (рис. 54, б),но дуги радиусом R описывать четыре раза из точек 1, 7, 4и 10 (рис. 55, б).
Используя угольник с углами 30 и 60° с последующим поворотом его на 180°, делят окружность на 12 равных частей (рис. 55, в).
Деление окружности на пять, десять и семь равных частей. В плашке (рис. 56, а) имеется пять отверстий, равномерно расположенных по окружности. Выполняя чертеж плашки (рис. 56, в), необходимо разделить окружность на пять равных частей. Через намеченный центр О (рис. 56, б)
при помощи рейсшины и угольника проводят осевые линии и из точки О циркулем описывают окружность заданного диаметра. Из точки А радиусом R, равным радиусу данной окружности, проводят дугу, которая пересечет окружность в точке n. Из точки n опускают перпендикуляр на горизонтальную осевую линию, получают точку С. Из точки С радиусом R1 равным расстоянию от точки С до точки 1, проводят дугу, которая пересечет горизонтальную осевую линию в точке т. Из точки 1 радиусом R , равным расстоянию от точки 1 до точки m, проводят дугу, пересекающую окружность в точке 2. Дуга 12 является 1/5 длины окружности. Точки 3,4 и 5 находят, откладывая циркулем отрезки, равные m1.
Деталь «звездочка» (рис. 57, а) имеет 10 одинаковых элементов, равномерно расположенных по окружности. Чтобы выполнить чертеж звездочки (рис. 57, я), следует окружность разделить на 10 равных частей. В этом случае следует применить то же построение, что и при делении окружности на пять частей (см. рис. 56, б). Отрезок п1 будет равняться хорде, которая делит окружность на 10 равных частей.
На рис. 58, а изображен шкив, а на рис. 58, в — чертеж шкива, где окружность разделена на семь равных частей.
Деление окружности на семь равных частей показано на рис. 58, б. Из точки А проводится вспомогательная дуга радиусом R, равным радиусу данной окружности, которая пересечет окружность в точке . Из точки n опускают перпендикуляр на горизонтальную осевую линию. Из точки 1 радиусом, равным отрезку nс, делают по окружности семь засечек и получают семь искомых точек.
Деление окружности на любое число равных частей. С достаточной точностью можно делить окружность на любое число равных частей, пользуясь таблицей коэффициентов для подсчета длины хорды (табл. 9).
Зная, на какое число (n) следует разделить окружность, находят по таблице коэффициент . При умножении коэффициента k на диаметр окружности D получают длину хорды l, которую циркулем откладывают на окружности n раз.
При построении чертежа кольца (рис. 59, а) необходимо окружность диаметра D=142 мм разделить на 32 равные части. Количеству частей окружности n=32 соответствует коэффициент k=0,098. Подсчитав длину хорды l=Dk=142×0,098= 13,9 мм, ее циркулем откладывают на окружности 32 раза (рис. 59, б и в).
Глава 3. Некоторые геометрические построения
Глава 3
Видео:Деление окружности на n- равные частиСкачать
§ 16. Деление окружности
Чтобы разделить окружность на четыре равных части , проводят два взаимно перпендикулярных диаметра: на пересечении их с окружностью получаем точки, разделяющие окружность на четыре равные части (рис. 31, а).
Чтобы разделить окружность на восемь равных частей , дуги, равные четвертой части окружности, делят пополам. Для этого из двух точек, ограничивающих четверть дуги, как из центров радиусов окружности выполняют засечки за ее пределами. Полученные точки соединяют с центром окружностей и на пересечении их с линией окружности получают точки, делящие четвертные участки пополам, т. е. получают восемь равных участков окружности (рис. 31, б).
Чтобы разделить окружность на двенадцать равных частей , ее делят на четыре части взаимно перпендикулярными диаметрами. Приняв точки пересечения диаметров с окружностью А, В, С, D за центры, величиной радиуса проводят четыре дуги до пересечения с окружностью. Полученные точки 1, 2, 3, 4, 5, 6, 7, 8 и точки А, В, С, D и разделяют окружность на двенадцать равных частей (рис. 31, в). Пользуясь радиусом, нетрудно разделить окружность на 3 и 6 равных участков.
Деление окружности на пять и десять равных частей (рис. 31, г). Проведя два взаимно перпендикулярных диаметра AB и CD, делят радиус 0D пополам в точке Е; из точки Е как из центра проводят дугу радиусом АЕ до пересечения ее с диаметром CD в точке F. Отрезок AF равен стороне вписанного пятиугольника, т.е. делят окружность на пять равных частей. Отрезок 0F равняется стороне десятиугольника и делит окружность на десять равных частей.
Другой способ деления окружности на пять и десять равных частей показан на рис. 31,е. Делят радиус, например ОС, пополам в точке D и проводят прямую DB. Откладывают на ней от точки D отрезок DE=D0. Тогда BE равняется стороне десятиугольника, а хорда KL — стороне пятиугольника.
Деление окружности на семь равных частей (рис.31,ж). Проводится вспомогательная дуга радиусом R, определяющая хорду MN, равную стороне правильного вписанного треугольника. Половина хорды MN=R1 с достаточным приближением равняется стороне правильного вписанного семиугольника, т.е. делит окружность на семь равных частей.
© Красноярский государственный аграрный университет
© Управление информационных технологий
© Кафедра Технологии машиностроения
🌟 Видео
Деление окружностей на равные частиСкачать
Деление окружности на 3 частиСкачать
Деление окружности на 3, 4, 5, 6 и 7 равных частейСкачать
1 2 2 деление окружности на 5 равных частейСкачать
Деление окружности на равные части с помощью циркуляСкачать
Деление окружности на N равных частей. Урок 8. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать
Деление окружности на 6 равных частейСкачать
деление окружности на произвольное число частейСкачать
Деление окружности на 7 частей циркулемСкачать
Деление окружности на 7 частейСкачать
Деление окружности на равные части. Внимание!!! В таблице имеются ошибки. ПОЛЬЗУЙТЕСЬ ФОРМУЛОЙ!!!Скачать
1 2 1 деление окружностиСкачать
Деление окружности на 4 частиСкачать
Построение шестнадцатиугольника циркулемСкачать