Поток вектора магнитной индукции через поверхность цилиндра

Теорема Остроградского-Гаусса для магнитного поля

В электродинамике доказывается следующая теорема для магнитного поля.

Поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю. Поток вектора магнитной индукции через поверхность цилиндра

Эта теорема является математическим следствием отсутствия в природе магнитных зарядов (на которых могли бы начинаться и заканчиваться линии магнитной индукции).

Хотя, например, Дирак высказывал предположение о том, что в природе должны существовать магнитные заряды (монополи Дирака); пока опытные доказательства такого предположения отсутствуют.

Согласно терминологии, принятой в векторном анализе, теорема Остроградского-Гаусса свидетельствует о том, что магнитное поле представляет собой так называемое соленоидальное поле.

Покажем справедливость теоремы (3.3.4) на простом примере (рис. 3.3.2).

Поток вектора магнитной индукции через поверхность цилиндра

Рассмотрим магнитное поле бесконечно длинного прямолинейного проводника с током I. В качестве замкнутой поверхности S возьмём поверхность прямого кругового цилиндра, радиус основания которого равен г, высота цилиндра равна /г, а ось цилиндра совпадает с осью проводника.

Как отмечалось ранее, линии индукции магнитного поля прямолинейного тока представляют собой концентрические окружности, центры которых лежат на оси проводника, а плоскости, в которых лежат эти окружности, перпендикулярны проводнику.

Поэтому линии индукции не пересекают ни боковой поверхности цилиндра, ни его оснований.

Следовательно, в любой точке поверхности проекция вектора на направление нормали п к поверхности равна нулю (Д =0), и

Поток вектора магнитной индукции через поверхность цилиндра

Проведём преобразования, подобные представленным в параграфе 1.2.4 для электростатического поля, в результате которых было получено выражение diЁ = —.

Для магнитного поля, заменяя в (3.3.4) поверхностный интеграл в левой части объёмным, запишем соотношение:

Поток вектора магнитной индукции через поверхность цилиндра

здесь divZ? — дивергенция вектора? .

Используя (3.3.4), запишем теорему Гаусса в виде:

Поток вектора магнитной индукции через поверхность цилиндра

Равенство нулю должно выполняться для любого произвольно выбранного объёма V. Это возможно лишь в том случае, если подынтегральная функция в данном выражении

Поток вектора магнитной индукции через поверхность цилиндра

Данное выражение представляет дифференциальную форму записи теоремы Остроградского-Гаусса для магнитного поля.

Можно сделать вывод, что магнитного аналога электрического заряда не существует. Нет зарядов, из которых выходят линии вектора магнитной индукции В .

Видео:Поток вектора магнитной индукцииСкачать

Поток вектора магнитной индукции

6.6. Поток вектора магнитной индукции. Вихревой характер магнитного поля

Потоком вектора магнитной индукции В (магнитным потоком) через малую поверхность площадью dS называется скалярная физическая величина, равная

Поток вектора магнитной индукции через поверхность цилиндра

Здесь Поток вектора магнитной индукции через поверхность цилиндра, Поток вектора магнитной индукции через поверхность цилиндра— единичный вектор нормали к площадке площадью dS, Вn — проекция вектора В на направление нормали, Поток вектора магнитной индукции через поверхность цилиндра— угол между векторами В и n (рис. 6.28).

Поток вектора магнитной индукции через поверхность цилиндра

Рис. 6.28. Поток вектора магнитной индукции через площадку

Магнитный поток ФB через произвольную замкнутую поверхность S равен

Поток вектора магнитной индукции через поверхность цилиндра

Отсутствие в природе магнитных зарядов приводит к тому, что линии вектора В не имеют ни начала, ни конца. Поэтому поток вектора В через замкнутую поверхность должен быть равен нулю. Таким образом, для любого магнитного поля и произвольной замкнутой поверхности S выполняется условие

Поток вектора магнитной индукции через поверхность цилиндра

Формула (6.28) выражает теорему Остроградского — Гаусса для вектора Поток вектора магнитной индукции через поверхность цилиндра:

Поток вектора магнитной индукции через произвольную замкнутую поверхность тождественно равен нулю.

Подчеркнем еще раз: эта теорема является математическим выражением того факта, что в природе отсутствуют магнитные заряды, на которых начинались бы и заканчивались линии магнитной индукции, как это имело место в случае напряженности электрического поля Е точечных зарядов.

Это свойство существенным образом отличает магнитное поле от электрического. Линии магнитной индукции замкнуты, поэтому число линий, входящих в некоторый объем пространства, равно числу линий, выходящих из этого объема. Если входящие потоки брать с одним знаком, а выходящие — с другим, то суммарный поток вектора магнитной индукции через замкнутую поверхность будет равен нулю.

В системе СИ единицей измерения магнитного потока является вебер (Вб) (рис. 6.29):

Поток вектора магнитной индукции через поверхность цилиндра

Поток вектора магнитной индукции через поверхность цилиндра

Рис. 6.29. В. Вебер (1804–1891) — немецкий физик

Отличие магнитного поля от электростатического проявляется также в значении величины, которую мы называем циркуляцией — интеграла от векторного поля по замкнутому пути. В электростатике равен нулю интеграл

Поток вектора магнитной индукции через поверхность цилиндра

взятый по произвольному замкнутому контуру. Это связано с потенциальностью электростатического поля, то есть с тем фактом, что работа по перемещению заряда в электростатическом поле не зависит от пути, но лишь от положения начальной и конечной точек.

Посмотрим, как обстоит дело с аналогичной величиной для магнитного поля. Возьмем замкнутый контур, охватывающий прямой ток, и вычислим для него циркуляцию вектора В, то есть

Поток вектора магнитной индукции через поверхность цилиндра

Как было получено выше, магнитная индукция, создаваемая прямолинейным проводником с током на расстоянии R от проводника, равна

Поток вектора магнитной индукции через поверхность цилиндра

Рассмотрим случай, когда контур, охватывающий прямой ток, лежит в плоскости, перпендикулярной току, и представляет собой окружность радиусом R с центром на проводнике. В этом случае циркуляция вектора В по этой окружности равна

Поток вектора магнитной индукции через поверхность цилиндра

Поток вектора магнитной индукции через поверхность цилиндра

Можно показать, что результат для циркуляции вектора магнитной индукции не меняется при непрерывной деформации контура, если при этой деформации контур не пересекает линий тока. Тогда в силу принципа суперпозиции циркуляция вектора магнитной индукции по пути, охватывающем несколько токов, пропорциональна их алгебраической сумме (рис. 6.30)

Поток вектора магнитной индукции через поверхность цилиндра

Поток вектора магнитной индукции через поверхность цилиндра

Рис. 6.30. Замкнутый контур (L) с заданным направлением обхода.
Изображены токи I1, I2 и I3, создающие магнитное поле.
Вклад в циркуляцию магнитного поля вдоль контура (L) дают только токи I2 и I3

Если выбранный контур не охватывает токов, то циркуляция Поток вектора магнитной индукции через поверхность цилиндрапо нему равна нулю.

При вычислении алгебраической суммы токов следует учитывать знак тока: положительным будем считать ток, направление которого связано с направлением обхода по контуру правилом правого винта. Например, вклад тока I2 в циркуляцию — отрицательный, а вклад тока I3 — положительный (рис. 6.18). Воспользовавшись соотношением

Поток вектора магнитной индукции через поверхность цилиндра

между силой тока I через любую замкнутую поверхность S и плотностью тока Поток вектора магнитной индукции через поверхность цилиндра, для циркуляции вектора В можно записать

Поток вектора магнитной индукции через поверхность цилиндра

где S — любая замкнутая поверхность, опирающаяся на данный контур L.

Циркуляция магнитной индукции отлична от нуля, если контур, по которому она берется, охватывает ток.

Такие поля называются вихревыми. Поэтому для магнитного поля нельзя ввести потенциал, как это было сделано для электрического поля точечных зарядов. Наиболее наглядно разницу потенциального и вихревого полей можно представить по картине силовых линий. Силовые линии электростатического поля похожи на ежей: они начинаются и кончаются на зарядах (либо уходят в бесконечность). Силовые линии магнитного поля никогда не напоминают «ежей»: они всегда замкнуты и охватывают текущие токи.

Для иллюстрации применения теоремы о циркуляции найдем другим методом уже известное нам магнитное поле бесконечного соленоида. Возьмем прямоугольный контур 1-2-3-4 (рис. 6.31) и вычислим циркуляцию вектора В по этому контуру

Поток вектора магнитной индукции через поверхность цилиндра

Поток вектора магнитной индукции через поверхность цилиндра

Рис. 6.31. Применение теоремы о циркуляции В к определению магнитного поля соленоида

Второй и четвертый интегралы равны нулю в силу перпендикулярности векторов Поток вектора магнитной индукции через поверхность цилиндраи Поток вектора магнитной индукции через поверхность цилиндра. Третий интеграл можно положить равным нулю, ввиду малости магнитного поля вне соленоида. Поэтому

Поток вектора магнитной индукции через поверхность цилиндра

Рассмотренный контур охватывает суммарный ток nlI, где n — число витков соленоида, приходящееся на единицу длины, I — сила тока в соленоиде. Следовательно,

Поток вектора магнитной индукции через поверхность цилиндра

Поток вектора магнитной индукции через поверхность цилиндра

Мы воспроизвели результат (6.20) без интегрирования магнитных полей от отдельных витков.

Полученный результат (6.35) можно использовать для нахождения магнитного поля тонкого тороидального соленоида (рис.6.32).

Поток вектора магнитной индукции через поверхность цилиндра

Рис. 6.32. Тороидальная катушка: линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r1 ≤ r < r2 изображена на рисунке

Дополнительная информация

Видео:Магнитный поток | Физика 9 класс #38 | ИнфоурокСкачать

Магнитный поток | Физика 9 класс #38 | Инфоурок

Поток вектора магнитной индукции

Магнитный поток Φ через площадку S (поток вектора магнитной индукции) – это скалярная величина:

Φ = B S cos α = B n S = B → S → с углом между n → и B → , обозначаемым α , n → является нормалью к площадке S .

Видео:Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"Скачать

Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"

Формула магнитного потока

Φ равняется количеству линий магнитной индукции, пересекающих площадку S , как показано на рисунке 1 . Поток магнитной индукции по формуле принимает положительные и отрицательные значения. Его знак зависит от выбора положительного направления нормали к площадке S . Зачастую положительное направление нормали связано с направлением обхода контура током. За такое направление берут поступательное перемещение правого винта во время его вращения по току.

Поток вектора магнитной индукции через поверхность цилиндра

Видео:Индукция магнитного поля | Физика 9 класс #37 | ИнфоурокСкачать

Индукция магнитного поля | Физика 9 класс #37 | Инфоурок

В чем измеряется магнитный поток

В случае неоднородности магнитного поля S не будет плоской, а плоскость может быть разбита на элементарные площадки d S , рассматриваемые в качестве плоских, поле которых также считается однородным. Определение магнитного потока d Φ производится через эту поверхность. Запись примет вид:

d Φ = B d S cos α = B → d S → .

Нахождение полного потока через поверхность S :

Φ = ∫ S B d S cos α = ∫ S B → d S → .

Основной единицей измерения магнитного потока в системе СИ считаются веберы ( В б ) . 1 В б = 1 Т л 1 м 2 .

Видео:Электромагнитная индукция. Магнитный поток. Правило Ленца | Физика 11 класс #4 | ИнфоурокСкачать

Электромагнитная индукция. Магнитный поток. Правило Ленца | Физика 11 класс #4 | Инфоурок

Связь магнитного потока и работы сил магнитного поля

Элементарная работа δ A , совершаемая силами магнитного поля, выражается через элементарное изменение потока вектора магнитной индукции d Φ :

Если проводник с током совершает конечное перемещение, сила тока постоянна, то работа сил поля равняется:

A = I Φ 2 — Φ 1 с Φ 1 , обозначаемым потоком через контур в начале перемещения, Φ 2 является потоком через контур в конце перемещения.

Видео:Теорема о циркуляции вектора магнитной индукции. Магнитный поток.Скачать

Теорема о циркуляции вектора магнитной индукции. Магнитный поток.

Теорема Гаусса для магнитного поля

Значение суммарного магнитного потока через замкнутую поверхность S равняется нулю:

Выражение ∮ B → d S → = 0 является справедливым для любых магнитных полей. Данное уравнение считается аналогом теоремы Остроградского-Гаусса в электростатике в вакууме:

Запись ∮ B → d S → = 0 говорит о том, что источник магнитного поля – это не магнитные заряды, а электрические токи.

Дан бесконечно длинный прямой проводник с током I , недалеко от которого имеется квадратная рамка. По ней проходит ток с силой I ‘ . Сторона рамки равна a . Она располагается в одной плоскости с проводом, как показано на рисунке 2 . Значение расстояния от ближайшей стороны рамки до проводника равняется b . Найти работу магнитной силы при удалении рамки из поля. Считать токи постоянными.

Поток вектора магнитной индукции через поверхность цилиндра

Индукция магнитного поля длинного проводника с током в части, где расположена квадратная рамка, направляется на нас.

Следует учитывать нахождение рамки с током в неоднородном поле, что означает убывание магнитной индукции при удалении от провода.

За основу возьмем формулу магнитного потока и работы, которая их связывает:

A = I ‘ Φ 2 — Φ 1 ( 1 . 1 ) , где I ‘ принимают за силу тока в рамке, Φ 1 – за поток через квадратную рамку при расстоянии от ее стороны к проводу равняющимся b . Φ 2 = 0 . Это объясняется тем, что конечное положение рамки вне магнитного поля, как дано по условию. Отсюда следует, запись формулы ( 1 . 1 ) изменится:

A = — I ‘ Φ 1 ( 1 . 2 ) .

Перейдем к нормали n → и выберем ее направление к квадратному контуру относительно нас, используя правило правого винта. Отсюда следует, что для всех элементов поверхности, ограниченной при помощи контура квадратной рамки, угол между нормалью n → и вектором B → равняется π . Запись формулы потока через поверхность рамки на расстоянии х от провода примет вид:

d Φ = — B d S = — B · a · d x = — μ 0 2 π I l d x x ( 1 . 3 ) , значение индукции магнитного поля бесконечно длинного проводника с током силы I будет:

B = μ 0 2 π x I l ( 1 . 4 ) .

Отсюда следует, что для нахождения всего потока из ( 1 . 3 ) потребуется:

Φ 1 = ∫ S — μ 0 2 π I l d x x = — μ 0 2 π I l ∫ b b + a d x x = — μ 0 2 π I l · ln b + a b ( 1 . 5 ) .

Произведем подстановку формулы ( 1 . 5 ) в ( 1 . 2 ) . Искомая работа равняется:

A = I ‘ μ 0 2 π I l · ln b + a b .

Ответ: A = μ 0 2 π I I ‘ l · ln b + a b .

Найти силу, действующую на рамку, из предыдущего примера.

Для нахождения искомой силы, действующей на квадратную рамку с током в поле длинного провода, предположим, что под воздействием магнитной силы рамка смещается на незначительное расстояние d x . Это говорит о совершении силой работы, равной:

δ A = F d x ( 2 . 1 ) .

Элементарная работа δ A может быть выражена как:

δ A = I ‘ d Φ ( 2 . 2 ) .

Произведем то же с силой, применяя формулы ( 2 . 1 ) , ( 2 . 2 ) . Получаем:

F d x = I ‘ d Φ → F = I ‘ d Φ d x ( 2 . 3 ) .

Используем выражение, которое было получено в примере 1 :

d Φ = — μ 0 2 π I l d x x → d Φ d x = — μ 0 2 π I l x ( 2 . 4 ) .

Произведем подстановку d Φ d x в ( 2 . 3 ) . Имеем:

F = I ‘ μ 0 2 π I l x ( 2 . 5 ) .

Каждый элемент контура квадратной рамки находится под воздействием сил (силы Ампера). Отсюда следует, что на рамку действует 4 силы, причем на стороны A B и D C равные по модулю и противоположные по направлению. Выражение принимает вид:

F A B → + F D C → = 0 ( 2 . 6 ) , то есть их сумма равняется нулю. Тогда значение результирующей силы, приложенной к контуру, запишется:

F → = F A D → + F B C → ( 2 . 6 ) .

Используя правило левой руки, получаем направление этих сил вдоль одной прямой в противоположные стороны:

F = F A D — F B C ( 2 . 7 ) .

Произведем поиск силы F A D , действующей на сторону A D , применив формулу ( 2 . 5 ) , где x = b :

F A D = I ‘ м 0 2 π I l b ( 2 . 8 ) .

Значение F B C будет:

F B C = I ‘ μ 0 2 π I l b + a ( 2 . 9 ) .

Для нахождения искомой силы:

F = I ‘ μ 0 2 π I l b — I ‘ μ 0 2 π I l b + a = I I ‘ μ 0 l 2 π 1 b — 1 b + a .

Ответ: F = I I ‘ μ 0 l 2 π 1 b — 1 b + a . Магнитные силы выталкивают рамку с током до тех пор, пока она находится в первоначальной ориентации относительно поля провода.

🎥 Видео

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

МАГНИТНЫЙ ПОТОК 9 и 11 класс физикаСкачать

МАГНИТНЫЙ ПОТОК 9 и 11 класс физика

Билет №02 "Теорема Гаусса"Скачать

Билет №02 "Теорема Гаусса"

Отрицательная индуктивностьСкачать

Отрицательная индуктивность

Электромагнитная индукция. ЕГЭ Физика. Николай НьютонСкачать

Электромагнитная индукция. ЕГЭ Физика. Николай Ньютон

Направление индукционного тока. Правило Ленца | Физика 9 класс #40 | ИнфоурокСкачать

Направление индукционного тока. Правило Ленца | Физика 9 класс #40 | Инфоурок

Физика Поток вектора магнитной индукцииСкачать

Физика Поток вектора магнитной индукции

Уравнение Мещерского и формула Циолковского LIVE | 11 класс, студенты МФТИ | Вузовская физика с FСкачать

Уравнение Мещерского и формула Циолковского LIVE | 11 класс, студенты МФТИ | Вузовская физика с F

2.3. Теорема о циркуляции вектора магнитной индукцииСкачать

2.3. Теорема о циркуляции вектора магнитной индукции

Урок 271. Модуль вектора магнитной индукции. Закон АмпераСкачать

Урок 271. Модуль вектора магнитной индукции. Закон Ампера

Электродинамика | теорема о циркуляции магнитной индукции | 1Скачать

Электродинамика | теорема о циркуляции магнитной индукции | 1

Галилео. Эксперимент. Электромагнитная индукцияСкачать

Галилео. Эксперимент. Электромагнитная индукция

Урок 222. Поток вектора напряженности электрического поляСкачать

Урок 222. Поток вектора напряженности электрического поля
Поделиться или сохранить к себе: