Постройте треугольник по стороне и радиусу описанной окружности

Постройте треугольник по стороне, прилежащему к ней углу и радиусу описанной окружности.

Видео:Строим треугольник по стороне, медиане и радиусу описанной окружности (Задача 8).Скачать

Строим треугольник по стороне, медиане и радиусу описанной окружности (Задача 8).

Ваш ответ

Видео:Построение треугольника по стороне и двум прилежащим к ней углам. 7 класс. Геометрия.Скачать

Построение треугольника по стороне и двум прилежащим к ней углам. 7 класс. Геометрия.

решение вопроса

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,006
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Как построить треугольник по двум сторонам и медиане, проведенной к одной из этих сторонСкачать

Как построить треугольник по двум сторонам и медиане, проведенной к одной из этих сторон

Треугольник вписанный в окружность

Постройте треугольник по стороне и радиусу описанной окружности

Видео:Построение треугольника по двум сторонам и углу между ними. 7 класс. Геометрия.Скачать

Построение треугольника по двум сторонам и углу между ними. 7 класс. Геометрия.

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Постройте треугольник по стороне и радиусу описанной окружности

Видео:Строим треугольник по стороне и двум углам (Задача 7).Скачать

Строим треугольник по стороне и двум углам (Задача 7).

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Как построить треугольник по двум сторонам и медиане, проведенной к третьей сторонеСкачать

Как построить треугольник по двум сторонам и медиане, проведенной к третьей стороне

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Постройте треугольник по стороне и радиусу описанной окружности

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:656. Построение треугольника по двум сторонам и радиусу описанной окружностиСкачать

656. Построение треугольника по двум сторонам и радиусу описанной окружности

Постройте треугольник по стороне и радиусу описанной окружности

§ 23. Метод геометрических мест точек в задачах на построение

Известно, что если смешать синий и жёлтый цвета, то получим зелёный.

Пусть на плоскости надо найти точки, обладающие какими-то двумя свойствами одновременно. Если синим цветом покрасить точки, обладающие первым свойством, а жёлтым — обладающие вторым свойством, то понятно, что зелёные точки будут обладать сразу двумя свойствами. В этом и состоит идея метода ГМТ, которую проиллюстрируем следующими задачами.

Постройте треугольник по стороне и радиусу описанной окружности

Задача 1. Постройте треугольник по трём данным его сторонам.

Постройте треугольник по стороне и радиусу описанной окружности

Решение. Пусть даны три отрезка, длины которых равны a , b , c (рис. 327). Надо построить треугольник ABC , в котором AB = c , AC = b , BC = a .

Проведём произвольную прямую. С помощью циркуля отложим на ней отрезок CB , равный a (рис. 328). Понятно, что задача свелась к построению третьей вершины треугольника, точки A .

Воспользуемся тем, что точка A обладает сразу двумя свойствами:

Постройте треугольник по стороне и радиусу описанной окружности

1) принадлежит геометрическому месту точек, удалённых от точки B на расстояние c , т. е. окружности с центром в точке B радиуса с (см. рис. 328);

2) принадлежит геометрическому месту точек, равноудалённых от точки C на расстояние b , т. е. окружности с центром в точке С радиуса b (см. рис. 328).

В качестве точки A можно выбрать любую из двух образовавшихся зелёных точек.

Полученный треугольник ABC является искомым, так как в нём AB = c , AC = b , BC = a . Постройте треугольник по стороне и радиусу описанной окружности

Из описанного построения следует, что если каждый из трёх данных отрезков меньше суммы двух других, то эти отрезки могут служить сторонами треугольника.

Постройте треугольник по стороне и радиусу описанной окружности

Задача 2. Постройте фигуру, все точки которой принадлежат данному углу, равноудалены от его сторон и находятся на заданном расстоянии a от его вершины.

Решение. Искомые точки принадлежат сразу двум геометрическим местам точек: биссектрисе данного угла и окружности с центром в его вершине и радиусом, равным a .

Построим биссектрису угла и указанную окружность (рис. 329). Их пересечением является искомая точка X . Постройте треугольник по стороне и радиусу описанной окружности

Задача 3. Постройте центр окружности радиуса R , проходящей через данную точку M и касающуюся данной прямой a .

Решение. Поскольку окружность касается прямой a , то её центр находится на расстоянии R от этой прямой. Геометрическим местом точек, удалённых от данной прямой на данное расстояние, являются две параллельные прямые (см. упражнение 498). Следовательно, центр окружности находится на прямой b или на прямой с (рис. 330).

Постройте треугольник по стороне и радиусу описанной окружности

Постройте треугольник по стороне и радиусу описанной окружности

Геометрическое место точек, являющихся центрами окружностей радиуса R , проходящих через точку M , — это окружность данного радиуса с центром в точке M . Поэтому в качестве центра искомой окружности можно выбрать любую из точек пересечения окружности с одной из прямых b или с (рис. 331).

Построение для случая, когда данная точка принадлежит данной прямой, рассмотрите самостоятельно. Постройте треугольник по стороне и радиусу описанной окружности

Задача 4. Постройте треугольник по стороне, медиане, проведённой к этой стороне, и радиусу описанной окружности.

Постройте треугольник по стороне и радиусу описанной окружности

Решение. Построим окружность данного радиуса и проведём хорду AB , равную стороне искомого треугольника. Тогда концы хорды являются двумя вершинами искомого треугольника. Понятно, что третья вершина принадлежит одновременно построенной окружности и окружности с центром в точке O , являющейся серединой хорды AB , и радиусом, равным данной медиане. Каждый из треугольников ABС 1 и ABС 2 (рис. 332) является искомым. Поскольку эти треугольники равны, то задача имеет единственное решение. Постройте треугольник по стороне и радиусу описанной окружности

Постройте треугольник по стороне и радиусу описанной окружности

Постройте треугольник по стороне и радиусу описанной окружности

Постройте треугольник по стороне и радиусу описанной окружности

622. Даны прямая m и точки A и B вне её (рис. 333). Постройте на прямой m точку, равноудалённую от точек A и B .

623. Точки A и B принадлежат прямой m . Постройте точку, удалённую от прямой m на расстояние a и равноудалённую от точек A и B . Сколько решений имеет задача?

624. Точки B и C принадлежат разным сторонам угла A , причём АВ ≠ АС . Постройте точку M , принадлежащую углу, равноудалённую от его сторон и такую, что MB = MC .

625. Точки B и C принадлежат разным сторонам угла A . Постройте точку D , принадлежащую углу, равноудалённую от его сторон и такую, что DC = BC . Сколько решений может иметь задача?

626. Постройте равнобедренный треугольник по основанию и боковой стороне.

Постройте треугольник по стороне и радиусу описанной окружности

627. Для данной окружности постройте точку, являющуюся её центром.

628. Постройте окружность данного радиуса, проходящую через данную точку, центр которой принадлежит данной прямой.

629. Постройте окружность данного радиуса, проходящую через две данные точки.

630. Найдите все точки, принадлежащие данной окружности и равноудалённые от концов данного отрезка. Сколько решений может иметь задача?

631. Даны две пересекающиеся прямые m и n и отрезок AB . Постройте на прямой m точку, удалённую от прямой n на расстояние AB . Сколько решений имеет задача?

632. В треугольнике ABC известно, что ∠ C = 90°. На катете AC постройте точку D , удалённую от прямой AB на расстояние CD .

633. Постройте равнобедренный треугольник по основанию и радиусу описанной окружности. Сколько решений может иметь задача?

634. Постройте треугольник по двум сторонам и медиане, проведённой к одной из данных сторон.

635. Постройте равнобедренный треугольник по боковой стороне и медиане, проведённой к боковой стороне.

Постройте треугольник по стороне и радиусу описанной окружности

636. На данной окружности постройте точку, находящуюся на данном расстоянии от данной прямой. Сколько решений может иметь задача?

637. На данной окружности постройте точку, равноудалённую от двух данных пересекающихся прямых. Сколько решений может иметь задача?

638. Между двумя параллельными прямыми дана точка. Постройте окружность, проходящую через эту точку и касающуюся данных прямых. Сколько решений имеет задача?

639. Постройте окружность, проходящую через данную точку A и касающуюся данной прямой m в данной точке B .

640. Даны две параллельные прямые и секущая. Постройте окружность, касающуюся этих трёх прямых.

641. Постройте треугольник по двум сторонам и радиусу описанной окружности. Сколько решений может иметь задача?

642. Постройте треугольник по стороне, высоте, проведённой к этой стороне, и радиусу описанной окружности. Сколько решений может иметь задача?

643. Постройте равносторонний треугольник по радиусу описанной окружности.

Постройте треугольник по стороне и радиусу описанной окружности

644. Три прямые попарно пересекаются и не проходят через одну точку. Постройте точку, равноудалённую от всех трёх прямых. Сколько решений имеет задача?

645. Постройте прямоугольный треугольник по катету и сумме гипотенузы и другого катета.

646. Постройте прямоугольный треугольник по гипотенузе и сумме катетов.

647. Постройте прямоугольный треугольник по гипотенузе и разности катетов.

648. Постройте прямоугольный треугольник по катету и разности гипотенузы и другого катета.

649. Постройте равнобедренный треугольник по основанию и разности боковой стороны и высоты, опущенной на основание.

650. Постройте треугольник по стороне, прилежащему к ней углу и сумме двух других сторон.

651. Постройте треугольник по стороне, прилежащему к ней углу и разности двух других сторон.

652. Постройте треугольник по стороне, противолежащему ей углу и разности двух других сторон.

653. Постройте треугольник по стороне, противолежащему ей углу и сумме двух других сторон.

654. Постройте треугольник по стороне, разности углов, прилежащих к этой стороне, и сумме двух других сторон.

655. Постройте треугольник по периметру и двум углам.

656. Постройте остроугольный треугольник по периметру, одному из углов и высоте, проведённой из вершины другого угла.

657. Постройте треугольник по высоте и медиане, проведённым из одной вершины, и радиусу описанной окружности.

658. Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне.

659. Постройте треугольник по стороне, высоте, проведённой к этой стороне, и медиане, проведённой к одной из двух других сторон.

Постройте треугольник по стороне и радиусу описанной окружности

Упражнения для повторения

Постройте треугольник по стороне и радиусу описанной окружности

660. На рисунке 334 ∠ A = 46°, ∠ ACB = 68°, ∠ DEC = 120°. Найдите углы треугольников EFC и DBE .

661. Через середину O стороны MK треугольника MKN провели прямую, перпендикулярную стороне MK и пересекающую сторону MN в точке C . Известно, что MC = KN , ∠ N = 50°. Найдите угол MCO .

662. В треугольнике ABC из вершины прямого угла C провели высоту CH и биссектрису CM . Длина отрезка HM в 2 раза меньше длины отрезка CM . Найдите острые углы треугольника ABC .

663. На рисунке 335 BD = DC , DN ⊥ BC , ∠ BDM = ∠ MDA . Найдите сумму углов MBN и BMD .

Постройте треугольник по стороне и радиусу описанной окружности

Наблюдайте, рисуйте, конструируйте, фантазируйте

664. Разрежьте фигуру, изображённую на рисунке 336, на три части, не являющиеся квадратами, так, чтобы из этих частей можно было сложить квадрат.

Постройте треугольник по стороне и радиусу описанной окружности

Постройте треугольник по стороне и радиусу описанной окружности

Постройте треугольник по стороне и радиусу описанной окружности

Когда сделаны уроки

Из истории геометрических построений

Умение достигать результат, используя минимальные средства, всегда считалось признаком высокого мастерства. Видимо, поэтому в Древней Греции в значительной степени было развито искусство выполнять геометрические построения с помощью только двух инструментов: дощечки с ровным краем (линейки) и двух заострённых палочек, связанных на одном конце (циркуля). Такое ограничение в выборе инструментов историки связывают с древнегреческой традицией, считавшей прямую и окружность самыми гармоничными фигурами. Так, в своей книге «Начала» великий учёный Евклид описывал построения геометрических фигур, при которых использовались лишь циркуль и линейка.

Существует много задач на построение. С некоторыми из них вы уже успели познакомиться. Однако есть три задачи на построение, которые сыграли в развитии математики особую роль. Эти задачи стали знаменитыми.

Задача о квадратуре круга. Построить квадрат, площадь которого равна площади данного круга.

Задача о трисекции угла (от латинских tria — «три» и section — «разрезание») . Разделить угол на три равные части.

Задача об удвоении куба. Построить куб, объём которого в 2 раза больше объёма данного куба.

Эти задачи занимали умы людей на протяжении тысячелетий. Их пытались решить и такие выдающиеся учёные древности, как Гиппократ Хиосский, Евдокс Книдский, Евклид, Эратосфен, Аполлоний Пергский, Герон, Папп, Платон, Архимед, и гении Нового времени Рене Декарт, Франсуа Виет, Исаак Ньютон. И лишь в середине XIX века была доказана их неразрешимость, т. е. невозможность выполнить указанные построения с использованием лишь циркуля и линейки. Этот результат был получен средствами не геометрии, а алгебры, благодаря переводу этих задач на язык уравнений.

Когда вы решали задачи на построение, особенно те, которые отмечены знаком Постройте треугольник по стороне и радиусу описанной окружности, вы, по-видимому, испытали сложности, связанные с ограниченностью набора инструментов. Поэтому предложение ещё больше сузить возможности применяемых приборов может показаться вам по меньшей мере неожиданным. Однако ещё в Х веке персидский математик Мохаммед Абу-ль-Вефа описал решение целого ряда задач на построение с помощью линейки и циркуля, раствор которого нельзя было менять. Совсем удивительной является теорема, опубликованная в 1797 году итальянским математиком Лоренцо Маскерони (1750–1800): всякое построение, выполнимое циркулем и линейкой, можно проделать одним циркулем. При этом Маскерони обусловливал следующее: поскольку одним циркулем провести прямую нельзя, то прямая считается построенной, если построены какие-нибудь две её точки.

В ХХ веке была обнаружена книга датского учёного Георга Мора (1640–1697), в которой он также описал построения одним циркулем. Поэтому сформулированную выше теорему называют теоремой Мора — Маскерони.

📸 Видео

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

Построение треугольника по трем сторонам. 7 класс . Геометрия.Скачать

Построение треугольника по трем сторонам. 7 класс . Геометрия.

Постройте треугольник по двум сторонам и медиане проведенной к третьей.Скачать

Постройте треугольник по двум сторонам и медиане проведенной к третьей.

Геометрия. Теорема Пифагора. ОГЭ по математике. Задание 16Скачать

Геометрия. Теорема Пифагора. ОГЭ по математике. Задание 16

Построение треугольника по углу и двум сторонам. 7 класс.Скачать

Построение треугольника по углу и двум сторонам. 7 класс.

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Как построить треугольник по стороне и двум прилежащим к ней угламСкачать

Как построить треугольник по стороне и двум прилежащим к ней углам

Строим треугольник по трем сторонам (Задача 5).Скачать

Строим треугольник по трем сторонам (Задача 5).

Как построить треугольник по трём медианамСкачать

Как построить треугольник по трём медианам

Как построить треугольник по стороне, прилежащему к ней углу и высоте, проведенной к этой сторонеСкачать

Как построить треугольник по стороне, прилежащему к ней углу и высоте, проведенной к этой стороне
Поделиться или сохранить к себе: