Разделы: Математика
Образовательная: совершенствовать знания учащихся по теме “Движение”, Показать применение преобразования “Движения” при решении геометрических и практических задач.
Развивающая: развитие умения обобщать, развитие интереса к изучаемому предмету.
Воспитательная: выработать внимание, самостоятельность при работе на уроке.
- I. Орг.момент
- II. Проверка домашней работы
- III. Устная работа
- IV. Решение задач
- V. Подведение итогов урока
- Метод вращения
- Школе NET
- Register
- Login
- Newsletter
- Мари Умняшка
- Постройте правильный треугольник так, чтобы его вершины лежали на трёх заданных параллельных прямых. Постройте правильный треугольник так, чтобы его вершины лежали на трёх заданных параллельных прямых.
- 🎥 Видео
I. Орг.момент
II. Проверка домашней работы
III. Устная работа
1) Вспомнить определение преобразования движения.
2) Виды движений. К доске вызываются 4 ученика, каждый из них формулирует определение конкретного вида преобразования Движения. На доске чертится следующий кластер:
3) Повторить свойства движений.
IV. Решение задач
Задача № 1. По одну сторону от отрезка АЕ построены равносторонние треугольники АВС и СДЕ; Р – середина ВЕ, М – середина АД. Докажите, что треугольник СМР – равносторонний.
Выполним преобразование поворот вокруг точки С на угол 60 0 против часовой стрелки. Точка Е переходит в точку D, точка В – в точку А.Отрезок ВЕ переходит в отрезок DА. По свойству поворота середина ВЕ переходит в середину DА, т.е. точка Р переходит в точку М. Значит СР=СМ, и угол РСМ=60 0 . Следовательно, треугольник СМР равносторонний.
Задача № 2 Построить равносторонний треугольник АВС с вершинами на трех данных параллельных прямых.
Допустим, что треугольник построен. Тогда, при повороте вокруг точки А против часовой стрелки на угол 60 0 точка С переходит в точку В, а прямая m3 в прямую m.
Построение:
- На прямой m1 взять точку А.
- Повернуть прямую m3 вокруг точки А против часовой стрелке на угол 60 0 . Прямая m3 переходит в прямую m . Точка пересечения этих прямых есть точка В.
- Выполнить поворот вокруг точки А на угол 60 0 по часовой стрелке точку В. Полученная точка и есть точка С.
- Построить треугольник АВС.
Задача № 3 Два прямоугольных треугольника расположены так, что их медианы проведенные к гипотенузе параллельны и равны. Докажите, что угол между некоторыми катетами вдвое меньше угла между гипотенузами.
Выполним параллельный перенос на вектор . При этом переносе точка С—> С1,точка М —> М1.
Построим окружность с центром в точке М1 и радиуса М1А. М1 – середина гипотенузы прямоугольных треугольников® точки А, А1, С1, В1, В – лежат на этой окружности. Угол между гипотенузами АМ1А1 – центральный угол, опирающийся на дугу АА1, угол между катетами АС1А1 – также опирается на эту дугу и он вписанный. По теореме о вписанном угле 2? АС1А1=? АМ1А1
Задача № 4 (Задача на применение движения (параллельного переноса, неравенство треугольника) В каком месте следует построить мост MN через реку, разделяющую две данные деревни А и В, чтобы путь АМNВ из деревни А в деревню В был кратчайшим? (берега реки считаются параллельными прямыми, мост строиться перпендикулярно реке).
Предположим, что некоторое положение моста найдено. При параллельном переносе, переводящем точку М в точку N, точка А перейдет в некоторую точку А1. Тогда АМ+МN+NВ=АА1+А1N+NBАА1+А1В (неравенство треугольника), причем равенство достигается, когда точки А1, N, и В лежат на одной прямой.
Отсюда вытекает следующий способ построения . Выполним параллельный перенос точки А на вектор . Точка А переходит в точку А1. Соединив точку А1 с точкой В, получим точу Д, которая и будет точкой начала моста.
V. Подведение итогов урока
1. Вопросы на стр. 281.
2. №1176, Дополнительная задача.
Дополнительная задача: На сторонах треугольника АВС построены из вне равносторонние треугольники АВС1, ВСА1, АСВ1. Докажите, что АА1, ВВ1, СС1 равны и угол между любыми двумя отрезками равен 60 0 .
Выполним преобразование поворот вокруг точки А по часовой стрелке на угол равный 60 0 . При этом АС1® АВ, а АС® АВ1. Следовательно СС1® В1В. Следовательно, отрезки СС1 и В1В равны и угол между ними 60 0 , т.к. поворот сохраняет равенство углов.
Аналогично для сторон АА1 и СС1.
Литература
- Геометрия: Учеб для 7-9 кл. образовательных . учреждений/ Л.С.Атанасян, В.Ф.Бутузов, и др.
- Геометрия 7-9, Гордин Р.К. Сборник задач
Видео:Построение равнобедренного треугольникаСкачать
Метод вращения
Указание. Пусть KLMP — искомый квадрат. Тогда центр О квадрата совпадает с центром параллелограмма. Повернем всю фигуру вокруг точки О на 90°; при этом точка М перейдет в точку Р, прямая I (11AD, Mel) перейдет в V, точка Я (ОЯ 1 I, Я е I) перейдет в Я’. Отсюда, выполняя обратный поворот на 90°, можно получить точку М (так как ОН _L Z), а следовательно, получим диагонали КМ и PL.
6.3. Даны две окружности Оа(га) и 02(г2), точка М и угол а. Построить равнобедренный треугольник АВС (АВ = АС) так, чтобы угол А равнялся а, вершина А совпадала с точкой М, а две другие вершины лежали бы на окружностях 01(г1) и 02(г2).
Указание. Повернуть вокруг точки М одну из данных окружностей на угол а и найти точки пересечения с другой окружностью. Задача может иметь одно, два или ни одного решения.
- 6.4. Даны точка А, прямая а и окружность О (г). Построить равносторонний треугольник с вершиной в точке А так, чтобы другие его вершины лежали соответственно на прямой а и окружности О (г).
- 6.5. В данный квадрат ABCD вписать равносторонний треугольник, одна из вершин которого дана на стороне квадрата.
- 6.6. Даны две прямые: р и q и точка А. Построить равносторонний треугольник так, чтобы одна его вершина совпадала с точкой А, а две другие лежали на прямых р ид.
- 6.7. На двух данных отрезках найти такую пару точек, что поворот вокруг данной точки на 45° отображает одну точку пары на другую.
- 6.8. Указать соответственно на данных прямой и отрезке такие две точки, чтобы одну из них можно было бы отобразить на другую поворотом вокруг данной точки на 30°.
- 6.9. На данных окружности и прямой найти такие пары точек, что одна точка является образом другой при повороте вокруг данной точки на 72°.
- 6.10. Даны полоса с краями а и Ъ и точка Р, принадлежащая этой полосе (Р g а, Р € Ь). Найти на ее краях а и b соответственно такие точки А и В, что РА = РВ и ZAPB = 90°.
- 6.11. Даны окружности (С^; 3 см), (02; 4 см) и точкам. Найти на данных окружностях соответственно точки А и В такие, чтобы AM = МВ и ZAMB = 60°.
- 6.12. На прямыху = Зх + 1 и у = -2х + 3 найти соответственно точки А и В, чтобы они находились на одинаковом расстоянии от начала координат и ZAOB = 90°.
- 6.13. Даны окружность и треугольник. Построить такой отрезок, чтобы концы его принадлежали данным окружности и сторонам треугольника, находились на одинаковом расстоянии от данной точки и были видны из нее под углом 120°.
- 6.14. Даны произвольный треугольник АВС и точка Р, принадлежащая внутренней области треугольника. Указать на сторонах ВС и АС соответственно точки К и М такие, что РК = КМ и ZKPM = 45°.
- 6.15. Построить равносторонний треугольник так, чтобы одной его вершиной была данная точка Р, другая принадлежала данной прямой а, третья — прямой Ъ.
- 6.16. Даны угол и точка А внутри него. Построить равнобедренный прямоугольный треугольник, вершиной прямого угла которого является точка А, а две другие вершины принадлежат сторонам данного угла.
- 6.17. Даны окружность, квадрат и точка Р. Построить равнобедренный треугольник РАВ (РА = РВ), вершины А и В которого принадлежат окружности и стороне квадрата, a ZAPB = 45°.
- 6.18. Построить равносторонний треугольник так, чтобы его вершины принадлежали трем данным параллельным прямым.
- 6.19. Даны полоса с краями а и с и прямая Ь, принадлежащая полосе. Построить ромб ABCD так, чтобы его вершины А, В и С принадлежали соответственно прямым а,Ь и с, a ZABC = 60°.
- 6.20. Построить квадрат так, чтобы три его вершины принадлежали трем данным прямым.
- 6.21. Построить равнобедренный прямоугольный треугольник так, чтобы вершины его острых углов принадлежали данным окружностям, а вершиной прямого угла являлась данная точка.
- 6.22. В данный квадрат вписать равносторонний треугольник так, чтобы одна из его вершин совпала с вершиной квадрата, а две другие принадлежали сторонам квадрата.
- 6.23. На сторонах АВ и АС треугольника АВС построены квадраты ABNM и ACQP, расположенные с треугольником АВС в различных полуплоскостях соответственно с границами АВ и АС. Доказать, что: а) МС = ВР; б) МС1 ВР.
- 6.24. Дан квадрат ABCD. Через центр этого квадрата проведены две взаимно перпендикулярные прямые, отличные от прямых АС и BD. Доказать, что фигуры, являющиеся пересечением этих прямых с квадратом, равны.
- 6.25. Отрезки, концами которых служат внутренние точки противоположных сторон квадрата, перпендикулярны. Доказать, что эти отрезки равны.
- 6.26. Земельный участок квадратной формы был огорожен. От изгороди сохранились четыре столба на сторонах квадрата. Восстановить границу участка.
- 6.27. Через центр равностороннего треугольника проведены две прямые, угол между которыми равен 60° и которые не содержат вершин треугольника. Доказать, что отрезки этих прямых, заключенные между сторонами треугольника, равны.
- 6.28. На сторонах АВ и ВС треугольника АВС построены квадраты ABMN и BCPQ, причем квадрат ABMN и треугольник АВС принадлежат различным полуплоскостям с границей АВ, а квадрат BCPQ и треугольник АВС — одной полуплоскости с границей ВС. Доказать, что MQ1AC и MQ = AC.
- 6.29. На сторонах АВ, ВС, CD и DA квадрата ABCD от вершин А, В, С и D отложены конгруэнтные отрезки АА,, ВВ,, ССХ и DD,. Доказать, что четырехугольник A1B1C1D1 — квадрат.
- 6.30. Хорды одной и той же окружности находятся на одинаковом расстоянии от центра окружности. Доказать, что они равны.
- 6.31. Даны две перпендикулярные прямые и точка, не принадлежащая им. Построить равносторонний треугольник с вершиной в данной точке и с двумя другими вершинами на данных прямых.
- 6.32. Построить равносторонний треугольник так, чтобы одной его вершиной была данная точка Р, другая принадлежала данной прямой а, третья — прямой Ь.
- 6.33. Построить равносторонний треугольник, имеющий одной своей вершиной данную точку А, а две другие вершины — на данных параллельных прямых.
- 6.34. Даны две параллельные прямые а, b и точка А, не принадлежащая им. Построить равнобедренный треугольник с данным углом а, вершина которого находится в данной точке А, а вершины основания лежат на прямых а и Ь.
- 6.35. Даны три параллельные прямые а, Ь, с. Построить равносторонний треугольник АВС, вершины которого лежат на данных прямых.
- 6.36. Построить равносторонний треугольник, вершины которого лежат на трех параллельных прямых, а центр — на четвертой прямой, не параллельной трем заданным.
- 6.37. В данный квадрат вписать равносторонний треугольник.
- 6.38. Построить квадрат так, чтобы три его вершины лежали на трех данных параллельных прямых.
- 6.39. Построить квадрат так, чтобы три его вершины принадлежали трем данным пересекающимся прямым.
- 6.40. Из данной точки Р, как из центра, описать дугу окружности так, чтобы концы ее лежали на двух данных окружностях, а градусная мера ее была равна градусной мере данного угла.
- 6.41. Даны две прямые, точка О и угол а. Провести такую окружность с центром О, чтобы одна из дуг этой окружности, концы которой принадлежат данным прямым, по угловой мере была равна а.
- 6.42. Даны две окружности и точка М. Построить равносторонний треугольник MNP, вершины которого N и Р принадлежат данным окружностям.
- 6.43. Даны три концентрические окружности. Построить равносторонний треугольник, вершины которого принадлежат этим окружностям.
- 6.44. Даны окружность, квадрат и точка Р. Построить равнобедренный треугольник РАВ (РА = РВ), вершины А и В которого принадлежат окружности и стороне квадрата, a ZAPB = 45°.
- 6.45. Даны угол и внутри него точка Л. Построить равнобедренный прямоугольный треугольник, вершина прямого угла которого совпадает с точкой А, а две другие вершины принадлежат сторонам угла.
- 6.46. Построить равнобедренный прямоугольный треугольник так, чтобы вершины его острых углов принадлежали данным окружностям, а вершиной прямого угла являлась данная точка.
- 6.47. Построить квадрат ABCD по его центру О и двум точкам М и N, принадлежащим прямым ВС и CD.
- 6.48. Построить квадрат ABCD по вершине А и двум точкам М и N, принадлежащим прямым ВС и CD.
- 6.49. На окружности с центром в точке О найти две такие точки С и D, что ZCOD = а, АС || BD, где А и В — две данные точки; а — величина данного угла.
- 6.50. Построить треугольник АВС, зная три точки, являющиеся центрами квадратов, построенных на сторонах треугольника, вне его.
- 6.51. Даны четыре точки К, L, М и N. Построить квадрат, стороны которого или их продолжения проходят через эти четыре точки.
- 6.52. Даны четыре точки К, L, М и N, расположенные на одной прямой. Построить квадрат, у которого продолжения двух противоположных сторон пересекают эту прямую в точках К и L, а продолжения двух других сторон — в точках М и N.
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Школе NET
Register
Do you already have an account? Login
Login
Don’t you have an account yet? Register
Newsletter
Submit to our newsletter to receive exclusive stories delivered to you inbox!
- Главная
- Вопросы & Ответы
- Вопрос 6731444
Мари Умняшка
Видео:№194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертежногоСкачать
Постройте правильный треугольник так, чтобы его вершины лежали на трёх заданных параллельных прямых. Постройте правильный треугольник так, чтобы его вершины лежали на трёх заданных параллельных прямых.
🎥 Видео
Формулы равностороннего треугольника #shortsСкачать
Равнобедренный треугольник. 7 класс.Скачать
7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать
№104. Начертите три равнобедренных треугольника так, чтобы угол, лежащий против основания, был:Скачать
Высота, биссектриса, медиана. 7 класс.Скачать
Свойства равнобедренного треугольника. 7 класс.Скачать
Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать
Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать
ЕГЭ Математика Задание 6#27935Скачать
Треугольники №15. Средняя линия. Средняя линия трапеции №17. Равносторонний треугольник. (ОГЭ)Скачать
10 класс, 14 урок, Задачи на построение сеченийСкачать
Как построить равнобедренный или равносторонний треугольник по клеткам.Скачать
Геометрия 7 класс. Урок 6 Осевая симметрия и равнобедренный треугольникСкачать
Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать