Построить все высоты треугольника

Как построить высоту треугольника — основные способы

Для решения многих геометрических задач учащемуся нужно уметь быстро построить высоту треугольника. Сделать это можно несколькими простыми для восприятия способами, которые подходят для фигуры разной формы и размера. Весь процесс состоит из определённой последовательности действий, правильно выполнить которые сможет каждый школьник.

Построить все высоты треугольника

Видео:Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

С применением циркуля

Если нужно нарисовать высоту (перпендикуляр к противоположной стороне) в произвольном треугольнике и измерить её, то лучше всего воспользоваться классическим методом построения. Он предусматривает использование циркуля в качестве основной рабочей принадлежности. Кроме этого, для работы понадобится лист бумаги, небольшая линейка, ластик и простой карандаш.

Способ начертить искомый отрезок:

Построить все высоты треугольника

Построить все высоты треугольника

  • На листе бумаги чертят треугольник (можно нарисовать заранее, чтобы сэкономить время).
  • Рисунок располагают так, чтобы вершина угла, из которого нужно начертить высоту, находилась сверху, а противоположная ему сторона фигуры была расположена горизонтально (по отношению к ученику).
  • Иглу циркуля ставят в вершине любого угла у основания.
  • Ножку с грифелем ставят в верхнюю точку треугольника, из которой проводится высота.
  • Циркулем рисуют окружность и делают пометку в месте её пересечения с основанием фигуры.
  • Аналогичным способом чертят круг из другого угла при основании. При этом важно определить новый радиус, который будет равен длине второй стороны треугольника.
  • Делают пометку в месте пересечения начерченных окружностей.
  • Ластиком стирают лишние линии, оставляя лишь поставленную точку.
  • С помощью карандаша и линейки из неё проводят отрезок к вершине, который и будет высотой треугольника.
  • Стирают линии, находящиеся под основанием.

Таким же способом можно с помощью циркуля построить высоту треугольника из любого другого угла.

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

С помощью линейки

Начертить и обозначить высоту можно и без циркуля. Для этого следует воспользоваться чертёжным угольником, 2 стороны которого перпендикулярны друг другу. Альтернативой этой школьной принадлежности могут стать 2 прямые линейки, соединённые между собой под прямым углом.

В остроугольном треугольнике

Провести высоту в треугольнике, где все углы острые (менее 90 градусов), довольно просто.

Чтобы справиться с этой задачей, нужно подготовить все необходимое и заранее начертить на бумаге геометрическую фигуру.

Правильная последовательность действий:

  • Находят вершину, из которой хотят провести перпендикуляр.
  • Совмещают угольник с противоположной стороной фигуры.
  • Перемещают чертёжную принадлежность до тех пор, пока её перпендикулярная сторона не пройдёт через вершину.
  • Простым карандашом проводят линию, которая и будет искомым отрезком.

В тупоугольной фигуре

Трёхсторонняя фигура, у которой один из углов тупой (более 90 градусов) имеет только 1 внутреннюю высоту. Для её проведения используют то же, что и в предыдущем случае.

Порядок действий:

  • Располагают чертёж так, чтобы тупой угол оказался у основания.
  • Угольник прикладывают к наибольшей стороне фигуры.
  • Совмещают перпендикулярную сторону линейки с вершиной тупого угла.
  • Соединяют 2 точки простым карандашом, получая искомую линию.

В прямоугольном и равнобедренном

В прямоугольном треугольнике нужно находить только 1 высоту. Две другие будут совпадать с катетами.

Пошаговая инструкция:

  • Прикладывают одну из перпендикулярных сторон угольника к гипотенузе.
  • Вторую сторону линейки совмещают с вершиной прямого угла.
  • Проводят линию, которая будет высотой.

Построить все высоты треугольника

Проще всего проводить перпендикуляр из верхней точки равнобедренного треугольника.

Он будет совпадать с биссектрисой и медианой фигуры. Начертить его можно таким же способом, что и для остроугольной фигуры. Более простой метод предусматривает выполнение следующих действий:

  • Линейкой замеряют длину основания.
  • Эту величину делят на 2.
  • Полученное значение откладывают от вершины одного из углов при основании.
  • Отмечают середину стороны и соединяют её с верхней точкой фигуры.

Проведение высоты в треугольнике — это простая задача, с которой легко справится каждый ученик.

Для этого достаточно сделать чертёж геометрической фигуры и воспользоваться одним из существующих способов построения. Такая работа потребует минимум времени и не отнимет у школьника много сил.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Как построить высоту треугольника

Рассмотрим, как построить высоту треугольника с помощью чертежного угольника.

Чтобы построить высоту остроугольного треугольника, надо приложить угольник так, чтобы одна сторона прямого угла проходила через вершину треугольника, а вторая — через противоположную этой вершине сторону.

Построить все высоты треугольника

AK — высота треугольника ABC, проведённая из вершины A к противолежащей стороне BC.

Построить все высоты треугольникаBF⊥AC.

BF — высота треугольника ABC, опущенная из вершины B на сторону AC.

Построить все высоты треугольника

CH — высота треугольника ABC, проведённая из вершины C к стороне AB.

Все высоты треугольника пересекаются в одной точке.

Построить все высоты треугольникаВ остроугольном треугольнике точка пересечения высот лежит внутри треугольника.

Если требуется построить все высоты треугольника, достаточно построить две, а третью провести из вершины треугольника через точку пересечения двух высот.

В прямоугольном треугольнике две стороны (катеты) являются также его высотами. Остаётся построить третью высоту.

Построить все высоты треугольникаУгольник прикладываем прямым углом так, чтобы одна сторона проходила через гипотенузу, а другая — через прямой угол.

CD — высота прямоугольного треугольника ABC, проведённая из вершины прямого угла C к гипотенузе AB.

Построить все высоты треугольника

Точка пересечения высот прямоугольного треугольника — вершина прямого угла.

Высоты AC, BC и CD прямоугольного треугольника ABC пересекаются в точке C, ∠C=90°.

В тупоугольном треугольнике проще всего построить высоту, выходящую из вершины тупого угла.

Построить все высоты треугольника

Прикладываем угольник прямым углом так, чтобы одна его сторона проходила через наибольшую сторону треугольника, а другая — через тупой угол.

AP — высота тупоугольного треугольника ABC, проведённая из вершины тупого угла A к стороне BC.

Только высота, проведённая из вершины тупого угла, лежит внутри треугольника. Две другие высоты находятся вне него.

Высоты тупоугольного треугольника, выходящие из вершин острых углов, проведены не к противолежащим сторонам, а к прямым, содержащим эти стороны.

Чтобы построить высоту, продлеваем противолежащую сторону и прикладываем угольник прямым углом таким образом, чтобы одна сторона угольника проходила через построенную прямую, а другая — через вершину острого угла.

Построить все высоты треугольника

BM — высота тупоугольного треугольника ABC, проведённая из вершины острого угла B к прямой, содержащей противолежащую сторону AC.

Построить все высоты треугольникаCN⊥AB,

CN — высота тупоугольного треугольника ABC, проведённая из вершины острого угла С к прямой, содержащей противолежащую сторону AB.

Построить все высоты треугольника

Точка пересечения высот тупоугольного треугольника лежит вне него, за тупым углом, напротив наибольшей стороны.

Чтобы построить точку пересечения высот треугольника ABC, продлим прямые BM, CN и AP до пересечения.

Мы рассмотрели, как строить высоты треугольника с помощью угольника.

Построение высот с помощью циркуля и линейки будем рассматривать в теме «Задачи на построение».

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Как построить высоту треугольника — основные способы

Построить все высоты треугольника

Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

С применением циркуля

Если нужно нарисовать высоту (перпендикуляр к противоположной стороне) в произвольном треугольнике и измерить её, то лучше всего воспользоваться классическим методом построения. Он предусматривает использование циркуля в качестве основной рабочей принадлежности. Кроме этого, для работы понадобится лист бумаги, небольшая линейка, ластик и простой карандаш.

Способ начертить искомый отрезок:

Построить все высоты треугольника

Построить все высоты треугольника

  • На листе бумаги чертят треугольник (можно нарисовать заранее, чтобы сэкономить время).
  • Рисунок располагают так, чтобы вершина угла, из которого нужно начертить высоту, находилась сверху, а противоположная ему сторона фигуры была расположена горизонтально (по отношению к ученику).
  • Иглу циркуля ставят в вершине любого угла у основания.
  • Ножку с грифелем ставят в верхнюю точку треугольника, из которой проводится высота.
  • Циркулем рисуют окружность и делают пометку в месте её пересечения с основанием фигуры.
  • Аналогичным способом чертят круг из другого угла при основании. При этом важно определить новый радиус, который будет равен длине второй стороны треугольника.
  • Делают пометку в месте пересечения начерченных окружностей.
  • Ластиком стирают лишние линии, оставляя лишь поставленную точку.
  • С помощью карандаша и линейки из неё проводят отрезок к вершине, который и будет высотой треугольника.
  • Стирают линии, находящиеся под основанием.

Таким же способом можно с помощью циркуля построить высоту треугольника из любого другого угла.

Видео:17. Медианы, биссектрисы и высоты треугольникаСкачать

17. Медианы, биссектрисы и высоты треугольника

С помощью линейки

Начертить и обозначить высоту можно и без циркуля. Для этого следует воспользоваться чертёжным угольником, 2 стороны которого перпендикулярны друг другу. Альтернативой этой школьной принадлежности могут стать 2 прямые линейки, соединённые между собой под прямым углом.

В остроугольном треугольнике

Провести высоту в треугольнике, где все углы острые (менее 90 градусов), довольно просто.

Чтобы справиться с этой задачей, нужно подготовить все необходимое и заранее начертить на бумаге геометрическую фигуру.

Правильная последовательность действий:

  • Находят вершину, из которой хотят провести перпендикуляр.
  • Совмещают угольник с противоположной стороной фигуры.
  • Перемещают чертёжную принадлежность до тех пор, пока её перпендикулярная сторона не пройдёт через вершину.
  • Простым карандашом проводят линию, которая и будет искомым отрезком.

В тупоугольной фигуре

Трёхсторонняя фигура, у которой один из углов тупой (более 90 градусов) имеет только 1 внутреннюю высоту. Для её проведения используют то же, что и в предыдущем случае.

Порядок действий:

  • Располагают чертёж так, чтобы тупой угол оказался у основания.
  • Угольник прикладывают к наибольшей стороне фигуры.
  • Совмещают перпендикулярную сторону линейки с вершиной тупого угла.
  • Соединяют 2 точки простым карандашом, получая искомую линию.

В прямоугольном и равнобедренном

В прямоугольном треугольнике нужно находить только 1 высоту. Две другие будут совпадать с катетами.

Пошаговая инструкция:

  • Прикладывают одну из перпендикулярных сторон угольника к гипотенузе.
  • Вторую сторону линейки совмещают с вершиной прямого угла.
  • Проводят линию, которая будет высотой.

Построить все высоты треугольника

Проще всего проводить перпендикуляр из верхней точки равнобедренного треугольника.

Он будет совпадать с биссектрисой и медианой фигуры. Начертить его можно таким же способом, что и для остроугольной фигуры. Более простой метод предусматривает выполнение следующих действий:

  • Линейкой замеряют длину основания.
  • Эту величину делят на 2.
  • Полученное значение откладывают от вершины одного из углов при основании.
  • Отмечают середину стороны и соединяют её с верхней точкой фигуры.

Проведение высоты в треугольнике — это простая задача, с которой легко справится каждый ученик.

Для этого достаточно сделать чертёж геометрической фигуры и воспользоваться одним из существующих способов построения. Такая работа потребует минимум времени и не отнимет у школьника много сил.

🎥 Видео

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Высоты треугольника.Скачать

Высоты треугольника.

Медиана, высота и биссектриса треугольника. Центроид, инцентр, ортоцентр. Геометрия 7 класс.Скачать

Медиана, высота и биссектриса треугольника. Центроид, инцентр, ортоцентр. Геометрия 7 класс.

Высота, медиана, биссектриса треугольника. Как построить в треугольнике. Геометрия 7 классСкачать

Высота, медиана, биссектриса треугольника. Как построить в треугольнике. Геометрия 7 класс

Построение биссектрисы в треугольникеСкачать

Построение биссектрисы в треугольнике

Как построить все высоты в тупоугольном треугольнике #shortsСкачать

Как построить все высоты в тупоугольном треугольнике #shorts

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

ПОСТРОЕНИЕ ВЫСОТЫ ТРЕУГОЛЬНИКА С ПОМОЩЬЮ ЦИРКУЛЯ. ЗАДАЧИ НА ПОСТРОЕНИЕ | ГЕОМЕТРИЯ 7 классСкачать

ПОСТРОЕНИЕ ВЫСОТЫ ТРЕУГОЛЬНИКА С ПОМОЩЬЮ ЦИРКУЛЯ. ЗАДАЧИ НА ПОСТРОЕНИЕ | ГЕОМЕТРИЯ 7 класс

№154. Дан треугольник ABC. Постройте: а) биссектрису АК; б) медиану ВМ; в) высоту СН треугольника.Скачать

№154. Дан треугольник ABC. Постройте: а) биссектрису АК; б) медиану ВМ; в) высоту СН треугольника.

Точка пересечения высот треугольника.Скачать

Точка пересечения высот треугольника.

Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Медианы биссектрисы и высоты треугольника. Как построитьСкачать

Медианы биссектрисы и высоты треугольника. Как построить

Треугольник, построение высоты.Скачать

Треугольник, построение высоты.

РАВНЫЕ ТРЕУГОЛЬНИКИ. Высоты. Медианы. Биссектрисы. §7 геометрия 7 классСкачать

РАВНЫЕ ТРЕУГОЛЬНИКИ. Высоты. Медианы. Биссектрисы.  §7 геометрия 7 класс
Поделиться или сохранить к себе: