Построить параллельную прямую на графике

Прямые на координатной плоскости
Построить параллельную прямую на графикеЛинейная функция
Построить параллельную прямую на графикеГрафик линейной функции
Построить параллельную прямую на графикеПрямые, параллельные оси ординат
Построить параллельную прямую на графикеУравнения вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

Построить параллельную прямую на графике

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Линейная функция

Линейной функцией называют функцию, заданную формулой

y = kx + b,(1)

где k и b – произвольные (вещественные) числа.

При любых значениях k и b графиком линейной функции является прямая линия .

Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .

Видео:Параллельность прямой к плоскостиСкачать

Параллельность прямой к плоскости

График линейной функции

При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.

Построить параллельную прямую на графике
Рис.1
Построить параллельную прямую на графике
Рис.2
Построить параллельную прямую на графике
Рис.3

При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.

Построить параллельную прямую на графике
Рис.4
Построить параллельную прямую на графике
Рис.5
Построить параллельную прямую на графике
Рис.6

При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.

k y = kx + b1 и y = kx + b2 ,

имеющие одинаковые угловые коэффициенты и разные свободные члены Построить параллельную прямую на графике, параллельны .

имеющие разные угловые коэффициенты Построить параллельную прямую на графике, пересекаются при любых значениях свободных членов.

y = kx + b1 и Построить параллельную прямую на графике

перпендикулярны при любых значениях свободных членов.

Угловой коэффициент прямой линии

y = kx(2)

равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).

Построить параллельную прямую на графике
Рис.10
Построить параллельную прямую на графике
Рис.11
Построить параллельную прямую на графике
Рис.12

Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .

При Построить параллельную прямую на графикепрямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле

Построить параллельную прямую на графике

Видео:6 .7 кл Построение параллельных прямых.Как построить параллельные прямыеСкачать

6 .7 кл Построение параллельных прямых.Как построить параллельные прямые

Прямые, параллельные оси ординат

Прямые, параллельные оси Oy , задаются формулой

x = c ,(3)

где c – произвольное число, и изображены на рис. 13, 14, 15.

Построить параллельную прямую на графике
Рис.13
Построить параллельную прямую на графике
Рис.14
Построить параллельную прямую на графике
Рис.15

Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;

Видео:Параллельные прямые циркулемСкачать

Параллельные прямые циркулем

Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

px + qy = r ,(4)

где p, q, r – произвольные числа.

В случае, когда Построить параллельную прямую на графикеуравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .

Построить параллельную прямую на графике

Построить параллельную прямую на графике

что и требовалось.

В случае, когда Построить параллельную прямую на графикеполучаем:

Построить параллельную прямую на графике

откуда вытекает, что уравнение (4) задает прямую линию вида (3).

В случае, когда q = 0, p = 0, уравнение (4) имеет вид

0 = r ,(5)

и при r = 0 его решением являются точки всей плоскости:

Построить параллельную прямую на графике

В случае, когда Построить параллельную прямую на графикеуравнение (5) решений вообще не имеет.

Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением

px + qy = r1 ,(6)

параллельна прямой, заданной уравнением (4) .

Замечание 3 . При любом значении r2 прямая линия, заданная уравнением

qx + py = r2 ,(7)

перпендикулярна прямой, заданной уравнением (4) .

Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и

  1. параллельной к прямой
    4x + 5y = 7 ;(8)
  2. перпендикулярной к прямой (8).

В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде

4x + 5y = r1 ,(9)

где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство

Построить параллельную прямую на графике

Итак, уравнение прямой, параллельной к прямой

В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде

– 5x + 4y = r2 ,(10)

где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство

Видео:Проецирование прямой общего положенияСкачать

Проецирование прямой общего положения

График линейной функции, его свойства и формулы

Построить параллельную прямую на графике

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Видео:Построение параллельной плоскости на расстояние 30 мм.Скачать

Построение параллельной плоскости на расстояние 30 мм.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

  • если х = 0, то у = -2;
  • если х = 2, то у = -1;
  • если х = 4, то у = 0;
  • и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Построить параллельную прямую на графике

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

ФункцияКоэффициент «k»Коэффициент «b»
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Свойства линейной функции

  1. Область определения функции — множество всех действительных чисел.
  2. Множеством значений функции является множество всех действительных чисел.
  3. График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
    Построить параллельную прямую на графике
  4. Функция не имеет ни наибольшего, ни наименьшего значений.
  5. Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
    b ≠ 0, k = 0, значит y = b — четная;
    b = 0, k ≠ 0, значит y = kx — нечетная;
    b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
    b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция.
  6. Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
  7. График функции пересекает оси координат:
    ось абсцисс ОХ — в точке (-b/k, 0);
    ось ординат OY — в точке (0; b).
  8. x=-b/k — является нулем функции.
  9. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
  10. Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
    При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k).
  11. Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
    Если k > 0, то этот угол острый, если k

Видео:Математика без Ху!ни. Уравнение касательной.Скачать

Математика без Ху!ни. Уравнение касательной.

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

Построить параллельную прямую на графике

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

  • если k > 0, то график наклонен вправо;
  • если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
  • если b 1 /2x + 3, y = x + 3.

Построить параллельную прямую на графике

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.

Построить параллельную прямую на графике

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.

Построить параллельную прямую на графике

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

  • график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
  • график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
  • график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

  • С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
    Координаты точки пересечения с осью OY: (0; b).
  • С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
    Координаты точки пересечения с осью OX: (- b /k; 0)

Построить параллельную прямую на графике

Видео:Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

  • В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
    Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
    Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
    2 = -4(-3) + b
    b = -10
  • Таким образом, нам надо построить график функции y = -4x — 10
    Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
    Поставим эти точки в координатной плоскости и соединим прямой:

Построить параллельную прямую на графике

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

  1. Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
    Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
  2. Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений. Построить параллельную прямую на графике
  3. Вычтем из второго уравнения системы первое, и получим k = 3.
    Подставим значение k в первое уравнение системы, и получим b = -2.

Видео:7 класс. Задайте формулой линейную функцию, параллельную данной и проходящую через точку NСкачать

7 класс. Задайте формулой линейную функцию, параллельную данной и проходящую через точку N

Как построить прямую? Как построить график прямой или линейной функции?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ

Для начала определимся с формулой прямой или линейной функции ее записывают по-разному, но смысл от этого не меняется:y=kx+b; y=ax+b; ax+by+c=0;

a и k — называются угловыми коэффициентами, а число b – свободным членом.

Если a>0 или k>0, то график прямой возрастающий;

Построить параллельную прямую на графике y=ax+b, a>0

Если a Построить параллельную прямую на графике a

Параллельные прямые имеют равные угловые коэффициенты и разные свободные члены b не равно с.
Пусть дано две прямые y=kx+b и y=ax+c, они будут параллельны если k=a

Построить параллельную прямую на графике Признак параллельности прямых a=k

Перпендикулярные прямые (это прямые которые пересекаются под 90 градусов), произведение их угловых коэффициентов будет равняться -1.
Пусть дано две прямые y=kx+b и y=ax+c, они будут перпендикулярны если k*a=-1

Построить параллельную прямую на графике Перпендикулярные прямые k*a=-1

b — указывает где график прямой пересекает ось y.

Построить параллельную прямую на графике

Алгоритм построения прямой.
Что бы построить прямую, нужно найти не менее двух то точек на графике и начертить линейную функцию.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Рассмотрим на примере №1:

берем 2 точки чтобы построить график прямой
x1=0 y1=0+2=2 получили точку (0;2)
x2=1 y2=1+2=3 получили точку (1;3)

Видно что a=1 (график прямой возрастает),
b=2 (график прямой пересекает ось y в точке (0;2))

Построить параллельную прямую на графике y=ax+b, a>0

Пример №2:
Среди прямых, заданных уравнениями, укажите пары параллельных прямых: 1) х+у=2; 2) у-х=2; 3) х-у=3; 4) y=1; 5) у=3; 6) 2х+2у+5=0.

Выразим во всех уравнениях y, получим
1) у=2-x; k=-1
2) у=2+x; k=1
3) у=x-3; k=1
4) y=1; k=0
5) у=3; k=0
6) у=-2,5-x; k=-1.

Ответ: Параллельные прямые 1) и 6); 2) и 3); 4) и 5), так как коэффициенты их равны.

💥 Видео

Прямая пропорциональность и её график. Алгебра, 7 классСкачать

Прямая пропорциональность и её график. Алгебра, 7 класс

Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

КАК ПОСТРОИТЬ ПРЯМУЮ ПАРАЛЛЕЛЬНУЮ ДАННОЙ ПРЯМОЙ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК ПОСТРОИТЬ ПРЯМУЮ ПАРАЛЛЕЛЬНУЮ ДАННОЙ ПРЯМОЙ? Примеры | МАТЕМАТИКА 6 класс

Уравнение касательной, параллельной заданной прямой.Скачать

Уравнение касательной, параллельной заданной прямой.

Построение прямой параллельной данной прямой проходящей через точку вне данной прямойСкачать

Построение прямой параллельной данной прямой проходящей через точку вне данной прямой

Уравнение параллельной прямойСкачать

Уравнение параллельной прямой

Прямая параллельная плоскостиСкачать

Прямая параллельная плоскости

Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать

Построение недостающей проекции плоскости. Принадлежность прямой к плоскости

Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.
Поделиться или сохранить к себе: