Построить образ окружности при осевой симметрии

Видео:8 класс, 9 урок, Осевая и центральная симметрияСкачать

8 класс, 9 урок, Осевая и центральная симметрия

Осевая и центральная симметрия

Построить образ окружности при осевой симметрии

О чем эта статья:

Видео:Осевая симметрия. 6 класс.Скачать

Осевая симметрия. 6 класс.

Что такое симметрия

Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.

Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.

Построить образ окружности при осевой симметрии

Центр симметрии — это точка, в которой пересекаются все оси симметрии.

Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.

Рассмотрите фигуры с осевой и центральной симметрией.

  • Ось симметрии угла — биссектриса.
  • Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
  • Оси симметрии прямоугольника проходят через середины его сторон.
  • У ромба две оси симметрии — прямые, содержащие его диагонали.
  • У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
  • Ось симметрии окружности — любая прямая, проведенная через ее центр.

Построить образ окружности при осевой симметрии

Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.

Видео:Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)Скачать

Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)

Осевая симметрия

Вот как звучит определение осевой симметрии:

Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

Построить образ окружности при осевой симметрии

В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

Построить образ окружности при осевой симметрии

  1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
  2. Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
  3. С другой стороны прямой отложим такие же расстояния.
  4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
  5. Получаем два треугольника, симметричных относительно оси симметрии.

Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

Построить образ окружности при осевой симметрии

  1. Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
  2. Измеряем расстояние от вершин до точек на прямой.
  3. Откладываем такие же расстояния на другой стороне оси симметрии.
  4. Соединяем точки и строим треугольник A1B1C1.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

Построить образ окружности при осевой симметрии

  1. Проводим через точку А прямую, перпендикулярную прямой l.
  2. Проводим через точку В прямую, перпендикулярную прямой l.
  3. Измеряем расстояния от точек А и В до прямой l.
  4. Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
  5. Соединяем точки A1 и B1.

Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!

Видео:Осевая и центральная симметрия, 6 классСкачать

Осевая и центральная симметрия, 6 класс

Центральная симметрия

Теперь поговорим о центральной симметрии — вот ее определение:

Центральной симметрией называется симметрия относительно точки.

Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.

Построить образ окружности при осевой симметрии

Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

Построить образ окружности при осевой симметрии

  1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
  2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
  3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
  4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

Построить образ окружности при осевой симметрии

  1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
  2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
  3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
  4. Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
  5. Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.

Видео:48. Осевая и центральная симметрииСкачать

48. Осевая и центральная симметрии

Задачи на самопроверку

В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!

Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.

Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:

Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная

Построить образ окружности при осевой симметрии

Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.

Построить образ окружности при осевой симметрии

Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.

Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.

Видео:Центральная и осевая симметрии. Геометрия 7 класс.Скачать

Центральная и осевая симметрии.  Геометрия 7 класс.

Как построить осевую симметрию окружности

Видео:Осевая и центральная симметрии. 6 класс.Скачать

Осевая и центральная симметрии. 6 класс.

Осевая и центральная симметрия

Построить образ окружности при осевой симметрии

О чем эта статья:

Видео:Осевая симметрия, как начертить треугольники симметричноСкачать

Осевая симметрия, как начертить треугольники симметрично

Что такое симметрия

Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.

Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.

Построить образ окружности при осевой симметрии

Центр симметрии — это точка, в которой пересекаются все оси симметрии.

Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.

Рассмотрите фигуры с осевой и центральной симметрией.

  • Ось симметрии угла — биссектриса.
  • Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
  • Оси симметрии прямоугольника проходят через середины его сторон.
  • У ромба две оси симметрии — прямые, содержащие его диагонали.
  • У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
  • Ось симметрии окружности — любая прямая, проведенная через ее центр.

Построить образ окружности при осевой симметрии

Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.

Видео:Центральная симметрия. Как построить фигуру, симметричную данной относительно точкиСкачать

Центральная симметрия. Как построить фигуру, симметричную данной относительно точки

Осевая симметрия

Вот как звучит определение осевой симметрии:

Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

Построить образ окружности при осевой симметрии

В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

Построить образ окружности при осевой симметрии

  1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
  2. Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
  3. С другой стороны прямой отложим такие же расстояния.
  4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
  5. Получаем два треугольника, симметричных относительно оси симметрии.

Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

Построить образ окружности при осевой симметрии

  1. Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
  2. Измеряем расстояние от вершин до точек на прямой.
  3. Откладываем такие же расстояния на другой стороне оси симметрии.
  4. Соединяем точки и строим треугольник A1B1C1.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

Построить образ окружности при осевой симметрии

  1. Проводим через точку А прямую, перпендикулярную прямой l.
  2. Проводим через точку В прямую, перпендикулярную прямой l.
  3. Измеряем расстояния от точек А и В до прямой l.
  4. Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
  5. Соединяем точки A1 и B1.

Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!

Видео:Осевая и центральная симметрия.Скачать

Осевая и центральная симметрия.

Центральная симметрия

Теперь поговорим о центральной симметрии — вот ее определение:

Центральной симметрией называется симметрия относительно точки.

Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.

Построить образ окружности при осевой симметрии

Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

Построить образ окружности при осевой симметрии

  1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
  2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
  3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
  4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

Построить образ окружности при осевой симметрии

  1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
  2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
  3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
  4. Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
  5. Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.

Видео:Геометрия 9 класс (Урок№30 - Поворот.)Скачать

Геометрия 9 класс (Урок№30 - Поворот.)

Задачи на самопроверку

В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!

Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.

Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:

Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная

Построить образ окружности при осевой симметрии

Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.

Построить образ окружности при осевой симметрии

Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.

Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.

Видео:Осевая симметрия. Как построить фигуру, симметричную данной относительно прямой. Геометрия 8 классСкачать

Осевая симметрия. Как построить фигуру, симметричную данной относительно прямой. Геометрия 8 класс

Осевая и центральная симметрии. Проводим урок с ЭФУ

Построить образ окружности при осевой симметрии

Видео:11 класс, 10 урок, Осевая симметрияСкачать

11 класс, 10 урок, Осевая симметрия

Что такое симметрия

Наиболее часто это понятие встречается в геометрии. Объект считается симметричным, если после некоторых геометрических преобразований он смог сохранить свои первоначальные свойства.

Построить образ окружности при осевой симметрии

В качестве примера стоит рассмотреть обычный круг. Если его вращать вокруг условного центра, он сохранит свою форму и первоначальные характеристики. Поэтому этот геометрический предмет смело можно назвать симметричным.

Виды симметрии определяются возможными преобразованиями для данного объекта и его свойствами, которые в результате проведенных манипуляций должны сохраниться. В случае, когда это условие не соблюдается, можно утверждать о наличии асимметрии.

Построить образ окружности при осевой симметрии

Рис. 1 Фигуры, обладающие симметричностью

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Видео

Видео:Центральная симметрия. 6 класс.Скачать

Центральная симметрия. 6 класс.

Симметрия геометрических фигур и тел

Рассмотрим внимательнее геометрические тела. Например, осью симметрии параболы является прямая, проходящая через ее вершину и рассекающая данное тело пополам. У этой фигуры имеется одна единственная ось.

А с геометрическими фигурами дело обстоит иначе. Ось симметрии прямоугольника — также прямая, но их несколько. Можно провести ось параллельно отрезкам ширины, а можно — длины. Но не все так просто. Вот прямая не имеет осей симметрии, так как ее конец не определен. Могла существовать только центральная симметрия, но, соответственно, и таковой не будет.

Построить образ окружности при осевой симметрии

Следует также знать то, что некоторые тела имеют множество осей симметрии. Об этом догадаться несложно. Даже не нужно говорить о том, сколько осей симметрии имеет окружность. Любая прямая, проходящая через центр окружности, является таковой и этих прямых — бесконечное множество.

У некоторые четырехугольников может быть две оси симметрии. Но вторые должны быть перпендикулярны. Это происходит в случае с ромбом и прямоугольником. В первом оси симметрии — диагонали, а во втором — средние линии. Множество таковых осей только у квадрата.

Видео:Ось симметрииСкачать

Ось симметрии

Осевая симметрия

Это симметрия относительно прямой. В данном классе две точки симметричны относительно некой прямой, если она пересекает центр отрезка, соединяющего эти две точки и является перпендикуляром к нему. Любая точка прямой симметрична сама себе.

Построить образ окружности при осевой симметрии

Рис. 3 Наглядное представление осевой симметрии

Объект симметричен относительно прямой, если все его точки имеют такие же симметричные аналоги относительно этой прямой. Она же — центр симметрии.

В качестве наглядно примера можно взять обычный бумажный лист, если его сложить пополам. Если через линию сгиба провести прямую – это и будет центром.

Определенная точка одной половины листы имеет такую же симметричную точку на другой его части, расположенную на перпендикуляре на таком же расстоянии от осевой линии. Одна часть листа тетради является по сути зеркальным отображением другой.

Построить образ окружности при осевой симметрии

Рис. 4 Примеры осевой симметрии

Видео:Поворот фигуры. Построить поворот фигур вокруг точки на угол по часовой или против часовой стрелкиСкачать

Поворот фигуры. Построить поворот фигур вокруг точки на угол по часовой или против часовой стрелки

Теорема и доказательство

Осевая симметрия – это движение, то есть при преобразовании осевой симметрии расстояние между точками сохраняется.

Если отрезок MN симметричен отрезку M1N1 относительно прямой a, то MN = M1N1.

Чтобы доказать, что MN = M1N1, сделаем дополнительные построения:

  • P – это точка пересечения MM1 и прямой a;
  • Q – это точка пересечения NN1 и прямой a;
  • построим отрезок MK, перпендикулярный NN1;
  • тогда точка K отразится в точку K1.

Докажем, что прямоугольные треугольники MNK и M1N1K1 равны. Стороны MN и M1N1 являются гипотенузами данных треугольников, поэтому, нужно доказать равенство катетов.

МК = М1К1 , так как перпендикулярны к параллельным прямым.

Точка N отобразилась в точку N1, значит:

Итак, треугольники равны по двум катетам, следовательно, их гипотенузы равны, то есть MN = M1N1, что и требовалось доказать.

Видео:СИММЕТРИЯ | осевая симметрия | центральная симметрияСкачать

СИММЕТРИЯ | осевая симметрия | центральная симметрия

Центральная симметрия

Это явление относительно некой точки. Она представляет собой преобразование множества точек пространства или поверхности, во время которого ее центр всегда постоянен и не меняет своего положения.

Построить образ окружности при осевой симметрии

Данный вид симметрии предполагает, что на равном расстоянии от ее центра располагаются два предмета, например, две точки. Если провести между ними условную прямую, они будут располагаться на ее противоположных концах, а середина этой прямой и будет являться осевым центром.

Если считать центр неподвижным и начать преобразовывать прямую (т. е. вращать ее относительно центральной точки), то точки на ее концах опишут две кривые. Все точки одной кривой будут иметь такие же симметричные точки на другой кривой.

Объекты, обладающие центром симметрии, представляют большой интерес для ученых. В геометрии насчитывается достаточно много таких объектов. К ним относятся прямые, отрезки, окружность, прямоугольник и др. Центрально симметричные объекты встречаются и в природе.

Построить образ окружности при осевой симметрии

Рис. 2 Графическое представление центральной симметрии

Видео:Геометрия 9 класс (Урок№29 - Параллельный перенос.)Скачать

Геометрия 9 класс (Урок№29 - Параллельный перенос.)

Центральная симметрия

Теперь поговорим о центральной симметрии — вот ее определение:

Центральной симметрией называется симметрия относительно точки.

На картинках центральная симметрия: точка O здесь — центр симметрии

Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.

Построить образ окружности при осевой симметрии

Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

Построить образ окружности при осевой симметрии

  1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
  2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
  3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
  4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

Построить образ окружности при осевой симметрии

  1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
  2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
  3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
  4. Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
  5. Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.

Видео:Осевая и центральная симметрия. Урок 5. Геометрия 8 классСкачать

Осевая и центральная симметрия. Урок 5. Геометрия 8 класс

Пример задачи

Постройте осевую симметрию тетраэдра, относительно оси $l$, изображенных на рисунке 4. Решение. Для построения такой осевой симметрии сначала проведем через все точки тетраэдра прямые, каждая из которых будет перпендикулярна к оси $l$ (рис. 5). Далее, для построения будем использовать определение 3. Точка $A$ перейдет в такую точку $A’$, которая будет принадлежать прямой $a$. Точка $B$ перейдет в такую точку $B’$, которая будет принадлежать прямой $b$. Точка $C$ перейдет в такую точку $C’$, которая будет принадлежать прямой $c$. Аналогично, и точка $D$ перейдет в такую точку $D’$, которая будет принадлежать прямой $k$. Причем, при этом первоначальная ось $l$ делит отрезки $[AA’]$, $[BB’]$, $[CC’]$, $[DD’]$ пополам. Таким образом, осевая симметрия этого тетраэдра изображена на рисунке 6.

Получи деньги за свои студенческие работы Курсовые, рефераты или другие работы

Осевая симметрия — виды, свойства и примеры фигур

Что такое осевая симметрия? Само слово «симметрия» имеет греческие корни и говорит о существующем определенном порядке расположения частей некого предмета, а также о его соразмерности.

Под симметрией понимается такое качество предметов, что их можно совместить друг с другом при некоторых преобразованиях.

Что такое симметрия

Наиболее часто это понятие встречается в геометрии. Объект считается симметричным, если после некоторых геометрических преобразований он смог сохранить свои первоначальные свойства.

Построить образ окружности при осевой симметрии

В качестве примера стоит рассмотреть обычный круг. Если его вращать вокруг условного центра, он сохранит свою форму и первоначальные характеристики. Поэтому этот геометрический предмет смело можно назвать симметричным.

Виды симметрии определяются возможными преобразованиями для данного объекта и его свойствами, которые в результате проведенных манипуляций должны сохраниться. В случае, когда это условие не соблюдается, можно утверждать о наличии асимметрии.

Построить образ окружности при осевой симметрии

Рис. 1 Фигуры, обладающие симметричностью

Центральная симметрия

Это явление относительно некой точки. Она представляет собой преобразование множества точек пространства или поверхности, во время которого ее центр всегда постоянен и не меняет своего положения.

Построить образ окружности при осевой симметрии

Данный вид симметрии предполагает, что на равном расстоянии от ее центра располагаются два предмета, например, две точки. Если провести между ними условную прямую, они будут располагаться на ее противоположных концах, а середина этой прямой и будет являться осевым центром.

Если считать центр неподвижным и начать преобразовывать прямую (т. е. вращать ее относительно центральной точки), то точки на ее концах опишут две кривые. Все точки одной кривой будут иметь такие же симметричные точки на другой кривой.

Объекты, обладающие центром симметрии, представляют большой интерес для ученых. В геометрии насчитывается достаточно много таких объектов. К ним относятся прямые, отрезки, окружность, прямоугольник и др. Центрально симметричные объекты встречаются и в природе.

Построить образ окружности при осевой симметрии

Рис. 2 Графическое представление центральной симметрии

Осевая симметрия

Это симметрия относительно прямой. В данном классе две точки симметричны относительно некой прямой, если она пересекает центр отрезка, соединяющего эти две точки и является перпендикуляром к нему. Любая точка прямой симметрична сама себе.

Построить образ окружности при осевой симметрии

Рис. 3 Наглядное представление осевой симметрии

Объект симметричен относительно прямой, если все его точки имеют такие же симметричные аналоги относительно этой прямой. Она же — центр симметрии.

В качестве наглядно примера можно взять обычный бумажный лист, если его сложить пополам. Если через линию сгиба провести прямую – это и будет центром.

Определенная точка одной половины листы имеет такую же симметричную точку на другой его части, расположенную на перпендикуляре на таком же расстоянии от осевой линии. Одна часть листа тетради является по сути зеркальным отображением другой.

Построить образ окружности при осевой симметрии

Рис. 4 Примеры осевой симметрии

Фигуры, имеющие несколько осей симметрии

Есть предметы и геометрические фигуры с некоторым числом осей. Для начала в качестве примера стоит рассмотреть прямоугольник и ромб, которые имеют две такие оси.

Две оси симметрии характерны для прямоугольника. Это прямые, которые проведены через точки, являющиеся серединами его противоположных сторон.

Построить образ окружности при осевой симметрии

То же самое (наличие двух осей) присуще и ромбу. Оси являются прямыми, содержащими диагонали данной геометрической фигуры.

Интерес представляет и квадрат, у которого насчитывается четыре оси. Данная фигура является одновременно и ромбом, и прямоугольником. Остальные виды параллелограммов не имеют осей симметрии вообще.

Построить образ окружности при осевой симметрии

Рис. 5 Оси симметрии ромба

Единственной фигурой, у которой есть три оси симметрии, является равносторонний треугольник. Они представляют собой не что иное, как его медианы, линии соединяющие середины его сторон. Медианы равностороннего треугольник – это его и биссектрисы, и высоты.

Построить образ окружности при осевой симметрии

Рис. 6 Оси симметрии равностороннего треугольника

В обычной жизни многие даже не задумываются о том, как часто они сталкиваются с различными видами симметрии. Это понятие характерно не только для мира математики.

Построить образ окружности при осевой симметрии

Симметрия встречается в мире природы, архитектуре, в мире искусства и композиции, а также в других сферах человеческой жизни.

Осознание данного факта прошло долгий путь во времени, над ним задумывались великие умы на протяжении многих столетий. С древних времен и до настоящего времени определение этого понятия прошло долгий путь развития.

Метод осевой симметрии

Этот метод заключается в том, что, проведя анализ задач, замечают, что вместо искомой фигуры можно построить фигуру, симметричную ей относительно некоторой прямой, а затем от нее перейти к построению искомой фигуры, проведя повторную симметрию.

При решении задач на построение методом осевой симметрии надо владеть следующими умениями:

  • 1) строить образы фигур при осевой симметрии;
  • 2) видеть симметричные относительно прямой точки на симметричных относительно этой же прямой фигурах;
  • 3) строить ось симметрии;
  • 4) находить симметричные относительно прямой точки на произвольных заданных фигурах.

Перейдем к решению задач.

Задача 6.6. Построить треугольник наименьшего периметра, вписанный в данный острый угол так, чтобы две его вершины принадлежали сторонам угла, а третья — данной точке внутренней области угла.

Приведем лишь краткие рекомендации по решению предложенной задачи. Решение задачи основано на свойствах осевой симметрии.

Строим точки Му и М2, симметричные данной точке М относительно прямых, содержащих стороны этого угла. Точки пересечения отрезка МУМ2 со сторонами угла являются вершинами искомого треугольника. Периметр полученного треугольника равен длине отрезка МУМ2, периметр любого данного треугольника, одной из вершин которого является точка М, а две другие принадлежат сторонам данного угла, равен длине ломаной, соединяющей точки М] и М2.

Задача 6.7. Даны две окружности и прямая I (рис. 6.6). Построить равносторонний треугольник так, чтобы две его вершины принадлежали данным окружностям, а одна из высот — прямой I.

Построить образ окружности при осевой симметрии

Предположим, что ААВС искомый (см. рис. 6.6).

Так как высота AD равностороннего ДАВС принадлежит прямой I, то точки В и С симметричны относительно этой прямой и лежат на данных окружностях.

Если точка С принадлежит окружности Р2 и симметрична точке В, принадлежащей окружности F,, относительно прямой I, то точка С принадлежит также и образу окружности F, при симметрии относительно прямой I. Следовательно, точка С есть общая точка окружности F2 и образа окружности Fy при симметрии S(. Построить окружность F<, являющуюся образом окружности Fy.

Затем строим точку В как образ точки С при симметрии S,, учитывая, что С принадлежит окружности F <и Fy симметрична F<.

Итак, последовательность построений такова:

  • 1) строим образ окружности Fx при симметрии S,;
  • 2) находим точки пересечения окружностей F <и р 2>
  • 3) отыскиваем на окружности Fx прообразы точек пересечения окружностей F <и F2;
  • 4) строим равносторонний ААВС (А е I).

Заметим, что задача может иметь единственное решение, когда окружность F2 пересекает окружность F <в точке С; она может иметь два решения, когда окружности F2 и F <пересекаются в точках М и К; бесконечно много решений задача имеет тогда, когда окружности F2 и F <совпадают; задача не имеет решений, когда окружности F2 и F< не пересекаются.

Задача 6.8. Окружность Fx пересекает концентрические окружности F2 и F3 соответственно в точках Л, В и С, D. Доказать, что хорды АВ и CD параллельны.

Пусть О — центр окружности Fx и Ох — центр окружностей F2 и F3. И пусть окружности Fx и F2 пересекаются в точках А и В, а окружности F, и F3 — в точках С и D. Тогда ООх — ось симметрии фигуры F, которая есть объединение окружностей Fx, F2 и F3.

Аналогично SGOl (C) = D. Так как AB J. 00x и CD 1 00х, то АВ || CD.

Задача 6.9. На бесконечной прямой АВ найти такую точку С, чтобы полупрямые CM, CN, проведенные из С через данные точки М и N, расположенные по одну сторону АВ, составляли с полупрямыми СА и СВ равные углы.

Анализ. Допустим, что задача решена (рис. 6.7) и

Построить образ окружности при осевой симметрии

Если повернем этот чертеж на 180° около оси АВ, то отрезок СМ примет положение СМ2 причем окажется, что

Построить образ окружности при осевой симметрии

Из равенств (*) и (**) вытекает, что ZACM2 = ZBCN, т.е. M2CN — прямая линия. Если удастся построить эту прямую M2N, то тем самым определим положение искомой точки С, потому что прямая M2N пересекает прямую АВ именно в этой точке.

Стремясь построить прямую M2N, нужно принять во внимание, что одна из ее точек (ЛГ) нам дана, а другая 2) симметрична точке М относительно оси АВ.

Построение. 1. Из точки М опустим перпендикуляр ММ, на прямую АВ.

  • 2. На продолжении отрезка ММХ от точки М, отложим отрезок MjM2, равный ММ], и получим точку М2, симметричную точке М относительно оси АВ.
  • 3. Соединим точки М2 и N.

Отрезок M2N пересечет прямую АВ в искомой точке С.

Доказательство предлагаем провести читателю самостоятельно.

Исследование. Задача всегда имеет решение. Отметим два частных случая.

  • 1. Если точки М и N не совпадают и находятся на одинаковом расстоянии от прямой АВ, то искомую точку С можно найти иным путем: из середины отрезка MN опустить перпендикуляр на прямую АВ. Основание этого перпендикуляра будет искомой точкой.
  • 2. Если точки М и N лежат на некоторой прямой DE, перпендикулярной к АВ, то точка С есть пересечение линий DE и АВ.

Задача 6.10. Построить по четырем сторонам (a, b, с, d) четырехугольник ABCD, зная, что его диагональ АС делит угол А пополам.

Анализ. Допустим, что ABCD есть искомый четырехугольник (рис. 6.8).

Построить образ окружности при осевой симметрии

Так как диагональ АС делит угол А пополам, то, отложив на прямой АВ от точки А отрезок ADb равный AD, мы получим точку D1; симметричную точке D.

Соединив точки С и Dlt получим отрезок CDX, равный CD, и ABCD1.

В Л BCD, нам известны все три стороны: 1) ВС = Ъ, 2) CD1 = CD = с, 3) BD1=AD1-AB=AD -AB = d-a.

Построив ABCDX по трем сторонам (Ь, с и dа), можно найти положение точки А: для этого надо на отрезке DXB от точки Dx отложить отрезок DXA, равный d. Соединив точки А и С, получим ААВС. Если на стороне АС построить, как показано на рис. 6.8, AACD, равный треугольнику ACDb то и получим искомый четырехугольник ABCD.

Построение. 1. Строим ABCD х по трем сторонам: Ъ, endа.

  • 2. На продолжении стороны BDX, равной d — а, откладываем от точки Dj отрезок DjA, равный d.
  • 3. Из точки А описываем дугу радиусом, равным d, а из точки С описываем дугу радиусом, равным с, и точку (D) пересечения этих дуг соединяем с точками А и С. ABCD — искомый четырехугольник.

Доказательство предлагаем провести читателю самостоятельно.

Исследование. Как видим, для получения искомого четырехугольника надо сначала построить вспомогательный д.BCDV стороны которого равны отрезкам Ь, с и d — а. Если сумма любых двух из этих отрезков больше третьего, то искомый четырехугольник можно построить.

От нашего усмотрения зависит, какой из четырех отрезков, данных в условии задачи, принимать за отрезок d, какой — за отрезок а и т.д. Поэтому для выяснения вопроса о числе решений всегда надо рассмотреть все возможные случаи распределения четырех данных отрезков.

Поделиться или сохранить к себе: