Построение прямой проходящей через данную точку и касающейся данной окружности

Касательная к окружности

Определение 1. Прямая, которая имеет с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

На рисунке 1 прямая l является касательной к окружности с центром O, а точка M является точкой касания прямой и окружности.

Построение прямой проходящей через данную точку и касающейся данной окружности

Видео:Перпендикуляр к прямой через заданную точку.Скачать

Перпендикуляр к прямой через заданную точку.

Свойство касательной

Теорема 1 (Теорема о свойстве касательной). Касательная к окружности перпендикулярна к радиусу, проведенному из центра окружности к точке касания прямой и окружности.

Доказательство. Пусть l касательная к окружности с центром O и M − точка касания прямой и окружности (Рис.1). Докажем, что ( small l ⊥ OM .)

Предположим, что радиус OM является наклонной к прямой l. Поскольку перпендикуляр, проведенной из точки O к прямой l меньше наклонной OM, от центра окружности до прямой l меньше радиуса окружности. Тогда прямая l и окружность имеют две общие точки (см. статью Взаимное расположение прямой и окружности). Но касательная не может иметь с окружностью две общие точки. Получили противоречие. Следовательно прямая l пенрпендикулярна к радиусу OM.Построение прямой проходящей через данную точку и касающейся данной окружности

Рассмотрим две касательные к окружности с центром O, которые проходят через точку A и касаются окружности в точках B и C (Рис.2). Отрезки AB и AC называются отрезками касательных, проведенных из точки A.

Построение прямой проходящей через данную точку и касающейся данной окружности

Теорема 2. Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через данную точку и центр окружности.

Доказательство. Рассмотрим рисунок 2. По теореме 1 касательные AC и AB перпендикулярны радиусам OC и OB, соответственно. Тогда углы 3 и 4 прямые, а треугольники ACO и ABO, прямоугольные. Эти треугольники равны по катету (OC=OB) и гипотенузе (сторона AO− общая) (подробнее см. в статье Прямоугольный треугольник. Онлайн калькулятор). Тогда AB=AC и ( small angle 1=angle 2 .) Что и требовалось доказать.Построение прямой проходящей через данную точку и касающейся данной окружности

Видео:ПОСТРОЕНИЕ ПРЯМОЙ ПЕРПЕНДИКУЛЯРНОЙ ДАННОЙ И ПРОХОДЯЩЕЙ ЧЕРЕЗ ДАННУЮ ТОЧКУ. ЗАДАЧИ. ГЕОМЕТРИЯ 7 классСкачать

ПОСТРОЕНИЕ ПРЯМОЙ ПЕРПЕНДИКУЛЯРНОЙ ДАННОЙ И ПРОХОДЯЩЕЙ ЧЕРЕЗ ДАННУЮ ТОЧКУ. ЗАДАЧИ. ГЕОМЕТРИЯ 7 класс

Теорема, обратная теореме о свойстве касательной

Теорема 3. Если прямая проходит через конец радиуса, лежащей на окружности и перпенжикулярна к этому радиусу, то эта прямая является касательной.

Доказательство. По условию теоремы данный радиус является перпендикуляром от центра окружности к данной прямой. То есть расстояние от центра окружности до прямой равно радиусу окружности, и, следовательно, прямая и окружность имеют только одну общую точку (теорема 2 статьи Взаимное расположение прямой и окружности). Но это означает, что данная прямая является касательной к окружности (Определение 1).

Видео:Построение прямой, перпендикулярной данной и проходящей через данную точкуСкачать

Построение прямой, перпендикулярной данной и проходящей через данную точку

Построение касательной к окружности

Задача 1. Через точку M окружности с центром O провести касательную этой окружности (Рис.3).

Построение прямой проходящей через данную точку и касающейся данной окружностиПостроение прямой проходящей через данную точку и касающейся данной окружности

Решение. Проведем прямую p через точки O и M. На прямой p из точки M отложим отрезок MN равной OM. Построим две окружности с центрами O и N и одинаковыми радиусами ON. Через точки пересечения этих окружностей проведем прямую l. Полученная прямая является касательным к окружности с центром O и радиусом OM.

Задача 2. Через точку A не принадлежащая к окружности с центром O провести касательную этой окружности (Рис.5).

Построение прямой проходящей через данную точку и касающейся данной окружностиПостроение прямой проходящей через данную точку и касающейся данной окружности

Решение. Проведем прямую p через точки O и A (Рис.6). Найдем среднюю точку отрезка OA и обозначим буквой K. Постоим окружность с центром K радиусом KO=KA. Найдем точки пересечения этой окружности с окружностью с центром O. Получим точки B и C. Через точки A и C проведем прямую m. Через точки A и B проведем прямую n. Прямые m и n являются касательными к окружности с центром O.

Видео:9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

Восемь способов построения касательной к окружности

Построение прямой проходящей через данную точку и касающейся данной окружности

Государственное бюджетное образовательное учреждение

Построение прямой проходящей через данную точку и касающейся данной окружности

Проектная работа по геометрии.

Восемь способов построения касательной к окружности.

9 биолого-химический класс

заместитель директора по учебной работе,

Высшее проявление духа – это разум.

Высшее проявление разума – это геометрия.

Клетка геометрии – треугольник. Он так же

неисчерпаем, как и вселенная. Окружность – душа геометрии.

Познайте окружность, и вы не только познаете душу

геометрии, но и возвысите душу свою.

Построить касательную к окружности с центром О и радиусом R, проходящую через точку А, лежащую вне окружности

Построения касательной к окружности, не требующие обоснования, опирающегося на теорию параллельных прямых.

Построение прямой проходящей через данную точку и касающейся данной окружностиПостроение №1.

1. Проведу отрезок ОА

2. Найду К – середину ОА

3. Построю окружность (К; КА).

4. Отмечу точки пересечения окружности (О; r) и окружности (К; КА) С и В.

5. Проведу АВ и ОВ.

Треугольник ОВА – прямоугольный, так как он вписан в окружность, и гипотенуза совпадает с диаметром окружности (К; КА). Следовательно, Построение прямой проходящей через данную точку и касающейся данной окружностиАВО =90°. Для окружности (О; r) ОВ – радиус. ОВ Построение прямой проходящей через данную точку и касающейся данной окружностиАВ, следовательно, АВ – касательная по признаку касательной.

Аналогично, АС – касательная к окружности.

Построение № 1 основывается на факте, который гласит, что касательная окружности перпендикулярна радиусу, проведенному в точку касания.

Для прямой имеется лишь одна точка касания с окружностью.

Через данную на прямой точку можно провести лишь одну перпендикулярную прямую.

Построение прямой проходящей через данную точку и касающейся данной окружности

1. Построю окружность (А; АО)

2. Построю окружность (О; 2R)

3. Построенные окружности пересекаются в точках М и N.

4. Отрезки ОМ и ОN пересекают данную окружность (О;R) в точках С и В.

5. АВ и АС – искомые касательные.

1. Проведу АО – радиус окружности (А;АО)

АМ и AN также радиусы окружности (А;АО), следовательно

2. ОВ = ВМ = ОС = CN = 0,5OM= 0,5ON, так как ОМ – радиус окружности (O;2R), а ОС – радиус окружности (О;R)

3. Рассмотрим треугольник ОАМ. В нем АМ=ОА, тогда Δ ОАМ равнобедренный по определению. ОВ= ВМ, следовательно, АВ – медиана и высота ΔОАМ, по свойству равнобедренного треугольника.

4. Так как в ΔОАМ АВ – высота, следовательно, Построение прямой проходящей через данную точку и касающейся данной окружностиАВО = 90°

5. ОВ – радиус, Построение прямой проходящей через данную точку и касающейся данной окружностиАВО = 90°, следовательно, АВ – касательная по признаку.

6. Аналогично в равнобедренном треугольнике AON АС – касательная (Построение прямой проходящей через данную точку и касающейся данной окружностиАСО = 90°, ОС – радиус)

7. Итак, АВ и АС – касательные

Построение прямой проходящей через данную точку и касающейся данной окружности

1. Построю концентрические окружности (О; r) и (O; OA)

2. Проведу ОА; ОА пересекает окружность (О; r) в точке Р.

3. Проведу перпендикуляр МN к радиусу ОА в точке Р.

4. MN пересекает окружность(О; ОА) в точках М и N.

5. Проведу ОМ и ОN. Эти отрезки пересекают окружность (О; r) в точках В и С соответственно.

6. АВ и АС– искомые касательные.

1. ОМ =ОА т. к. радиусы

2. В треугольниках ОМР и ОВА:

ОР = ОВ как радиусы, ОМ = ОА как радиусы, следовательно, ΔОМР = ΔОВА по двум сторонам и углу между ними.

3. Следовательно Построение прямой проходящей через данную точку и касающейся данной окружностиОРМ =Построение прямой проходящей через данную точку и касающейся данной окружностиОВА= 90° ( как соответствующие углы в равных треугольниках), следовательно, АВ – касательная по признаку касательной.

4. Аналогично, АС – касательная

Построение прямой проходящей через данную точку и касающейся данной окружности

1. Построю окружность (О, 2r).

2. Построю произвольную касательную к окружности (О; r), пересекающую окружность (О, 2r) в точках M и N.

3. Рассмотрим поворот относительно точки О на угол АОМ, равный α.

4. Точку М надо повернуть на угол α, следовательно она перейдет точку А

Точку М надо повернуть на (180 — α) следовательно, точка М перейдет в точку К.

Тогда, так как угол α остается тем же, AD и АК – касательные по признаку

Построения касательной к окружности одной линейкой, одним циркулем.

Построение прямой проходящей через данную точку и касающейся данной окружности

1. Прямая ОА пересекает окружность (О, r) в точках Р и Q.

2. Проведу через точку А произвольную прямую, пересекающую окружность(О, r) в точках М и N.

3. Прямая PN пересекает прямую QM в точке L.

4. Прямая PM пересекает прямую QN в точке K.

5. Прямая KL пересекает окружность в точках B и С.

6. АВ и ВС – искомые касательные.

1. Т. к. треугольники PQN и PQM вписаны в окружность и сторона PQ является диаметром окружности, то эти треугольники прямоугольные.

2. В треугольнике PQL отрезки PM и QN – высоты, пересекающиеся в точке К, поэтому KL – третья высота. Тогда KL Построение прямой проходящей через данную точку и касающейся данной окружностиPQ.

3. Пусть Построение прямой проходящей через данную точку и касающейся данной окружностиDPK=α, Построение прямой проходящей через данную точку и касающейся данной окружностиDQK=β. Тогда ctg α : ctg β= |PD|:|DQ| (1).

Построю перпендикуляр к прямой АР в точке А, пересекающий прямую РМ в точке S. Тогда |PA|=|AS|ctg α и |AQ|=|AS|ctg AQS.

4. Так как Построение прямой проходящей через данную точку и касающейся данной окружностиAQS =Построение прямой проходящей через данную точку и касающейся данной окружностиAMS = 180° — Построение прямой проходящей через данную точку и касающейся данной окружностиPMN = Построение прямой проходящей через данную точку и касающейся данной окружностиPQN = β, то |AQ| = |AS|ctg β. Поэтому |PA| : |AQ| = ctg α : ctg β (2).

5. Сопоставляя (1) и (2) получу |PD| : |PA| = |DQ| : |AQ|, или

После раскрытия скобок и упрощений нахожу, что |OD|·|OA|=R².

5. Из соотношения |OD|·|OA|=R² следует, что |OD|:R=R: |OA|, то есть треугольники ODB и OBA подобны. Поскольку Построение прямой проходящей через данную точку и касающейся данной окружностиODB= 90°, то Построение прямой проходящей через данную точку и касающейся данной окружностиOBA=90°.Следовательно, прямая АВ – искомая касательная, что и требовалось доказать.

Построение № 6. Построение прямой проходящей через данную точку и касающейся данной окружности

1. Прострою окружность (A; |OA|).

2. Найду раствор циркуля, равный 2R, для чего выберу на окружности (О; R) точку S и отложу три дуги, содержащие по 60º: SP=PQ=QT=60°. Точки S и T диаметрально противоположны.

3. Строю окружность (О; ST), пересекающую w1Что это за окружность? в точках М и N.

4. Теперь построю середину МО. Для этого строю окружности (O; OM) и (М; МО), а затем для точек М и О находим на них диаметрально противоположные точки U и V.

5. Далее строю окружность (U; UM), пересекающую (М; МО) в точках К и L.

6. Наконец, построю окружность (К; КМ) и (L; LM), пересекающиеся в искомой точке В – середине МО.

Треугольники КМВ и UMK равнобедренные и подобные. Поэтому из того, что КМ= 0,5МU, следует, что МВ=0,5МК=0,5R. Итак, точка В – искомая точка касания. Аналогично можно найти точку касания С.

Построения касательной к окружности, основанные на свойствах секущих, биссектрис.

Построение прямой проходящей через данную точку и касающейся данной окружности

1. Построю прямую ОА, она пересечен данную окружность в точках Р и Q.

2. Построю на отрезке АQ как на диаметре окружность.

3. Пересеку построенную окружность касательной l, проведенной через точку Р к окружности (О; r), и получу точки М и N.

4. Проведу МО и NО, они пересекут окружность (О; r) в точках В и С соответственно.

5. АВ и АС — искомые касательные.

По свойству секущей АМ²=АР·АQ. Поэтому окружность (А;АМ) пересечет окружность (О;R) в точках В и С касания искомых касательных АВ и АС.

Построение прямой проходящей через данную точку и касающейся данной окружностиПостроение № 8

1. Построю окружность (А;АР), пресекающую прямую АР в точке D.

2. Построю окружность w на диаметре QD

3. Пересеку ее перпендикуляром к прямой АР в точке А и получу точки М и N.

Очевидно, что АМ²=АN²=АD·AQ=AP·AQ. Тогда окружность (А;АМ) пересекает (О;R) в точках касания В и С. АВ и АС — искомые касательные.

Видео:Окружность данного радиуса, проходящей через две заданные точкиСкачать

Окружность данного радиуса, проходящей через две заданные точки

Касательная к окружности

Построение прямой проходящей через данную точку и касающейся данной окружности

О чем эта статья:

Видео:Построение прямой, параллельной даннойСкачать

Построение прямой, параллельной данной

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Построение прямой проходящей через данную точку и касающейся данной окружности

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Построение прямой проходящей через данную точку и касающейся данной окружности

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:Построение перпендикуляра к прямойСкачать

Построение перпендикуляра к прямой

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Построение прямой проходящей через данную точку и касающейся данной окружности

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Построение прямой проходящей через данную точку и касающейся данной окружности

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Построение прямой проходящей через данную точку и касающейся данной окружности

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Построение прямой проходящей через данную точку и касающейся данной окружности

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Построение прямой проходящей через данную точку и касающейся данной окружности

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Построение прямой проходящей через данную точку и касающейся данной окружности

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Построение прямой проходящей через данную точку и касающейся данной окружности

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Построение прямой проходящей через данную точку и касающейся данной окружности

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Построение прямой проходящей через данную точку и касающейся данной окружности

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Построение прямой проходящей через данную точку и касающейся данной окружности

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

🌟 Видео

Построение прямой, параллельной даннойСкачать

Построение прямой, параллельной данной

Окружность. 7 класс.Скачать

Окружность. 7 класс.

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)

Как построить прямую, перпендикулярную данной прямой через точку, которая лежит на данной прямойСкачать

Как построить прямую, перпендикулярную данной прямой через точку, которая лежит на данной прямой

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnline

Параллельные прямые циркулемСкачать

Параллельные прямые циркулем

ЗАДАЧИ НА ПОСТРОЕНИЕ. §22 геометрия 7 классСкачать

ЗАДАЧИ НА ПОСТРОЕНИЕ. §22 геометрия 7 класс

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

7 класс, 23 урок, Примеры задач на построениеСкачать

7 класс, 23 урок, Примеры задач на построение

Внешнее сопряжение дуги и прямой дугой заданного радиуса. Урок16.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Внешнее сопряжение дуги и прямой дугой заданного радиуса. Урок16.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Построение угла, равного данному. 7 класс.Скачать

Построение угла, равного данному. 7 класс.

Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать

Построение недостающей проекции плоскости. Принадлежность прямой к плоскости
Поделиться или сохранить к себе: