Понятия о векторах история

Вектор. История возникновения понятия

Понятия о векторах история

Понятия о векторах история

Уи́льям Ро́уэн Га́мильтон, 1805-1865 — ирландский математик, механик-теоретик, физик-теоретик, «один из лучших математиков XIX века»

Просмотр содержимого документа
«Вектор. История возникновения понятия»

Вектор. История возникновения понятия

Одним из фундаментальных понятий современной математики являются вектор и его обобщение – тензор. Эволюция понятия вектора осуществлялась благодаря широкому использованию этого понятия в различных областях математики, механики, а так же в технике.

Вектор относительно новое математическое понятие. Сам термин «вектор» впервые появился в 1845 году у ирландского математика и астронома Уильяма Гамильтона (1805 – 1865) в работах по построению числовых систем, обобщающих комплексные числа. Гамильтону принадлежат и термин «скаляр», «скалярное произведение», «векторное произведение». Почти одновременно с ним исследования в том же направлении, но с другой точки зрения вёл немецкий математик Герман Грассман (1809 – 1877). Англичанин Уильям Клиффорд (1845 – 1879) сумел объединить два подхода в рамках общей теории, включающий в себя и обычное векторное исчисление. А окончательный вид оно приняло в трудах американского физика и математика Джозайи Уилларда Гиббса (1839 – 1903), который в 1901 году опубликовал обширный учебник по векторному анализу.

Конец прошлого и начало текущего столетия ознаменовались широким развитием векторного исчисления и его приложений. Были созданы векторная алгебра и векторный анализ, общая теория векторного пространства. Эти теории были использованы при построении специальной и общей теории относительности, которые играют исключительно важную роль в современной физике.

Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением. Например, некоторые физические величины, такие, как сила, скорость, ускорение и др., характеризуются не только числовым значением, но и направлением. В связи с этим указанные физические величины удобно изображать направленными отрезками.

Видео:Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)Скачать

Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)

Возникновение понятия «вектор»

Введение

С понятием вектор я познакомилась на уроках геометрии. Особого интереса она у меня не вызвала. Однако, практически сразу понятие «вектор» встретилось и на уроках физики. Тогда стало ясно, что вектор не сугубо математическое понятие, оно применяется и в других областях науки. Вектор — это направленный отрезок. А зачем они нужны? Встречаются ли они в жизни? Может, стоит присмотреться? Если вы начинаете утро с прогноза погоды, то слышали, к примеру: «Ветер северо-западный, скорость 18 метров в секунду». Нельзя не согласится, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости. Идем в школу: видим дорожные знаки, вроде этих:

Понятия о векторах историяПонятия о векторах история

Придя в школу или на работу, видим направляющие знаки:

Понятия о векторах история

Примеры направляющих знаков вы можете увидеть в Приложении 1. Видим, что векторы присутствуют в нашей жизни.

Актуальность изучения данной темы связано с многообразием сфер применения векторов: от искусства до сложных задач моделирования реальных процессов. Понятие вектора используется во многих приложениях математики, таких, как современная алгебра и геометрия, теория функций и теория вероятностей. Учебники по таким, на первый взгляд, далеким от математики предметам, как электротехника, радиотехника, теория антенн и др., очень широко используют векторы.

Я решила выяснить, в каких именно областях науки применяются векторы, насколько это понятие актуально в жизни.

Целью моей работы:

Рассмотреть векторы как математические модели реальных процессов.

Перед собой я поставила такие задачи:

· Изучить литературу по данной теме;

· Изучить понятие «вектор» в предметах естественно-научного цикла;

· Узнать, как осуществляется моделирование с помощью векторов.

· Установить, используется ли данное понятие в жизни;

Возникновение понятия «вектор»

Одним из основных понятий математики являются «вектор». Развитие этого понятия происходило благодаря широкому использованию его в различных областях математики, информатики, механики, а также в технике.

Вектор – молодое математическое понятие. Этот термин впервые употребил ирландский математик Уильям Гамильтон в 1845 году в своих работах по построению числовых систем, обобщающих комплексные числа. Также он ввел термины «скаляр», «скалярное произведение», «векторное произведение». Исследования в этой области проводил ещё немецкий физик-математик Г. Грассман. Его идеи об абстрактных векторных пространствах привели к важному открытию – возможности рассматривать цветовые ощущения как трехмерные векторы. Это легло в основу современного учения о свете. Им были установлены законы сложения цветов.

Понятие «вектор» стало широко использоваться в математике в XIX веке, когда стал активно развиваться раздел математики «Комплексные числа». Векторы использовались для наглядного представления таких чисел. В школах эта тема изучается с 1963 года. Сейчас понятие вектора стало одним из ведущих понятий школьного курса математики.

Есть такое высказывание: «Карьера начинается в школе», поэтому я решила глубже изучить понятие «вектор», рассмотреть его значение в математическом моделировании и выяснить в каких профессиях применяется данное понятие.

3. Использование векторов в различных науках:

В физике

Векторы — мощный инструмент не только математики, но и физики. Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением. Многие физические величины, такие, как сила, скорость, ускорение, характеризуются не только числовым значением, но и направлением. Эти величины очень удобно изображать в виде направленных отрезков. На языке векторов формулируются основные законы механики и электродинамики. Чтобы понимать физику, нужно научиться работать с векторами. Векторная алгебра является фундаментом, на котором построена классическая физика. С помощью векторов можно моделировать различные физические процессы. Например, некоторые физические поля (магнитное и электромагнитное, сила тяжести) рассматриваются как векторные поля. Такая модель позволяет применять к изучаемым понятиям удобные методы математических расчётов.

Векторные величины в физике: скорость, перемещение, ускорение, сила, импульс, напряженность электрического поля, магнитная индукция, момент силы. Для этих величин важно «сколько» и «куда».

Скорость изучается на уроках математики и на уроках физики, и при решении многих задач на скорость необходимо сделать рисунок, на котором направление движения показывается стрелками. Векторами удобно моделировать движение в одном направлении, в разных направлениях, движение по кругу, движение по воде. Составленная таким образом схема-модель поможет решить задачу.

Пример схем некоторых задач на движение:

Тело с большей скоростью догоняет тело с меньшей скоростью:

Понятия о векторах история

Движение в противоположные стороны:

Понятия о векторах история

Равномерным движением по окружности называется такое движение, при котором скорость не меняется по модулю, а меняется лишь её направление. При этом вектор ускорения перпендикулярен вектору скорости. Вектор скорости направлен по касательной к окружности.

Понятия о векторах история

Еще одна физическая векторная величина, которую я хотела бы рассмотреть – это сила. Сила определяет меру интенсивности воздействия, которое оказывается на тело со стороны других тел или полей. Результат действия силы зависит от направления. На рисунке вы можете видеть модель направления силы тяжести и всемирного тяготения.

Понятия о векторах история

В физике можно найти ещё много примеров, где векторы применяются как средство моделирования физических процессов.

В химии

Также векторы помогают создавать математические модели некоторых химических процессов. Например, для того, чтобы показать строение атома используются всё те же векторы.

На схеме вы можете видеть строение атома азота:

Понятия о векторах история

На таких схемах стрелками изображается электрон, а направление соответствует направлению спина (собственного магнитного момента электрона). Операции над спинами производятся так же, как и операции над векторами, что позволяет трактовать химические процессы языком математики. Примером векторных частиц, имеющих спин служат: фотон, глюон, W- и Z-бозоны, векторные мезоны, ортопозитроний.

Химические реакции записываются с помощью уравнений, в записи которых используются векторы.

Пример, реакция обмена, взаимодействие хлорида кальция и нитрата серебра с образованием осадка хлорида серебра:

CaCl2(ж) + 2AgNO3(ж) Понятия о векторах историяCa(NO3)2(ж) + 2AgCl(тв)

В биологии

Биология относится к наукам естественно-математического цикла. Часто для того, чтобы смоделировать тот или иной процесс, приходится использовать язык математики или переносить суть математических понятий на понятия биологические. Суть понятия «вектор» — это направленность. В биологии этим словом называют организм, который переносит паразита от одного организма к другому. Например, клещи являются переносчиками вируса, вызывающего энцефалит. В генетике вектором считается молекула нуклеиновой кислоты, которая используется для передачи генетического материала другой клетке. С помощью организмов векторов синтезируются различные лекарственные средства, в том числе и антибиотики, ферменты, необходимые человеку (инсулин).

В настоящее время создана векторная модель для доставки в клетки костного мозга гена, кодирующего гранулоцитарный колониестимулирующий фактор человека. Данный белок относится увеличивает продолжительность жизни клеток костного мозга, усиливает функциональную активность зрелых нейтрофилов. Созданный вектор представляет собой многослойную конструкцию. Эффективность описанной векторной модели была доказана опытным путем. При конструировании противовирусных вакцин немаловажное значение имеет создание специального вектора-носителя, обеспечивающего адресную доставку генов и их защиту от действия нуклеаз крови.

В географии

Оказывается, векторы, как отрезки, показывающие направление нашли своё отражение и в географии. Так, ветер – характеризуемый величиной и направлением, рассматривается как вектор. Распределение ветра исследуется в векторной форме. Таким образом, ветер (горизонтальное движение воздушных частиц относительно подстилающей поверхности) – векторная величина и описывается двумя параметрами – скоростью ( м/с) и направлением. Вектор – модель ветра. Аналогично, с помощью векторов показывают направление движения воздушных масс в циклонах и антициклонах.

Понятия о векторах история

Вектор также служит моделью всевозможных течений. Горизонтальные перемещения водных масс в морях и океанах называются морскими течениями. К элементам, характеризующим течение, относятся направление и скорость. Значит, течение – векторная величина. С помощью векторов и действий над ними осуществляется учет приливно-отливных течений.

Течение реки, подводные течения океанов показывают с помощью векторов.

Понятия о векторах история

С помощью векторов составляют карты миграции птиц и животных.

Используя действия над векторами можно рассчитать пролетные пути перелетных птиц.

Векторы в профессиях.

Я выяснила, что векторы используются во многих науках для моделирования самых различных процессов и явлений. Значит, это понятие потребуется во всех технических профессиях, профессиях, связанных с компьютерными технологиями, в медицине, химии и т.д. Векторы нужны для освоения профессии строителя и архитектора, так как особое место вектору отводится в сопромате, ведь нагрузка на разные элементы конструкций является разложением вектора по базису векторов силы тяжести и других приложенных к конструкции сил. В самолетостроении, судостроении, автомобилестроении при конструировании транспорта также применяются векторы и их свойства.

В науке судовождение используются векторы и их свойства для определения кажущегося ветра во время движения судна. В штилевую погоду на судне, имеющего ход, всегда ощущается встречный ветер, равный скорости судна. Он имеет название курсовой ветер и имеет направление, противоположное движению судна. Таким образом, на движущемся судне наблюдается кажущийся ветер, вектор которого равен геометрической сумме истинного и курсового ветров. Для определения направления ветра используется способ построения векторного треугольника.

Понятия о векторах история

Векторы понадобятся и портному для правильного составления выкроек одежды.

Выводы

Выполнив работу, я увидела, что векторы находят широкое применение в геометрии и в прикладных науках, где используются для представления величин, имеющих направление (силы, скорости и т. п.).

Вектор может служить моделью для любого явления, характеризующегося величиной и направлением. Так, в физике – это сила, ускорение, скорость; в химии – это изображения строения атома, изображения химических реакций; в биологии – это модель переноса вирусов, процессов клонирования и создания вакцин; в географии – это модель ветра, течения. Таким образом, векторное исчисление является универсальным инструментом, позволяющим создавать математические модели физических, химических и биологических процессов. Векторы широко используются в экономике и компьютерной графике, при построении вычислительных нейронных структур и всем известных популярных социальных сетей. Умение оперировать с объектами посредством векторного исчисления помогает находить удобные и наглядные пути решения сложных задач, поэтому хорошее знание этого раздела школьной математики необходимо каждому, чья будущая профессия связана с техникой, компьютерами, естественными науками, пространственным мышлением.

Башмаков М.А. Что такое вектор?-2-е изд., стер.- М.: Квант, 1976.-221с.

Выгодский М.Я. Справочник по элементарной математике.-3-е изд., стер. — М.: Наука, 1978.-186с.

Гусятников П.Б. Векторная алгебра в примерах и задачах.-2-е изд., стер.- М.: Высшая школа, 1985.-302с.

В.В. Элементарная математика. Повторительный курс.-3-е изд., стер.- М.: Наука,1976.-156с.

Коксетер Г.С. Новые встречи с геометрией.-2-е изд., стер. — М.: Наука,1978.-324с.

Погорелов А.В. Аналитическая геометрия.- 3-е изд., стер. — М.: Квант,1968.-235с.

Видео:Зачем нужен ВЕКТОР. Объяснение смыслаСкачать

Зачем нужен ВЕКТОР. Объяснение смысла

Проектная работа. Вектор. 9 класс

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Видео:8 класс, 40 урок, Понятие вектораСкачать

8 класс, 40 урок, Понятие вектора

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

МБОУ Одинцовская гимназия №13

Проектная работа по теме

Выполнили ученики 9А класса

Руководитель учитель математики

Понятия о векторах история

Что такое вектор и действия над векторами.

Векторы в геометрии, в физике, в других науках.

Векторы в повседневной жизни.

С уверенностью можно сказать, что мало кто из людей задумывается о том, что векторы окружают нас повсюду и помогают нам в повседневной жизни. Рассмотрим ситуацию: парень назначил девушке свидание в двухстах метрах от своего дома. Найдут ли они друг друга? Конечно, нет, так как юноша забыл указать главное: направление, то есть по-научному – вектор.

Далее, в процессе работы над данным проектом, Мы приведём ещё интересные примеры с векторами.

Вообще, мы считаем, что математика – это интереснейшая наука, в познании которой нет границ.

Мы выбрали тему о векторах не случайно, нас очень заинтересовало то, что понятие «вектор» выходит далеко за рамки одной науки, а именно математики, и окружает нас практически везде. Таким образом, каждый человек должен знать, что такое вектор, поэтому, мы думаем, что эта тема весьма актуальна. В физике, химии, психологии, биологии, экономике и многих других науках употребляют понятие «вектор».

Цель проекта – подготовить раздел школьной энциклопедии «Вектор».

Задачами д анного проекта являются:

— познакомить с историей возникновения понятия «вектор»;

— дать понятие –вектор, продемонстрировать действий над векторами;

— показать применение векторов в решении задач по геометрии и физике;

— научить видеть необычное в обычном;

— выработать внимательное отношение к окружающему миру.

История возникновения понятия «вектор».

Одним из фундаментальных понятий современной математики является вектор. Эволюция понятия вектора осуществлялась благодаря широкому использованию этого понятия в различных областях математики, механики, а также в технике.

Вектор относительно новое математическое понятие.

Интуитивно вектор понимается как объект, имеющий величину, направление и точку приложения. Зачатки векторного исчисления появились вместе с геометрической моделью комплексных чисел ( Гаусс, 1831).

Понятия о векторах история

Сам термин «вектор» впервые появился в 1845 году у ирландского математика и астронома Уильяма Гамильтона (1805 – 1865) в работах по построению числовых систем, обобщающих комплексные числа.

Гамильтону принадлежат и термин «скаляр», он определил в качестве операций над новыми объектами скалярное и векторное произведение.

Понятия о векторах история

Гибсс — американский физик, физикохимик, математик и механик, один из создателей векторного анализа, статистической физики, математической теории термодинамики, что во многом предопределило развитие современных точных наук и естествознания в целом.

Образ Гиббса запечатлён в «Галерее славы великих американцев». Его имя присвоено многим величинам и понятиям химической термодинамики: энергия Гиббса, парадокс Гиббса, правило фаз Гиббса, уравнения Гиббса — Гельмгольца, уравнения Гиббса — Дюгема, лемма Гиббса, треугольник Гиббса — Розебома и др.

Понятия о векторах история

Видео:Что такое вектора? | Сущность Линейной Алгебры, глава 1Скачать

Что такое вектора? | Сущность Линейной Алгебры, глава 1

Почти одновременно с ним исследованиями в том же направлении занимался английский математик — Уильям Кингдон Клиффорд (1845–1879)

Конец прошлого и начало текущего столетия ознаменовались широким развитием векторного исчисления и его приложений. Были созданы векторная алгебра и векторный анализ, общая теория векторного пространства. Эти теории были использованы при построении специальной и общей теории относительности, которые играют исключительно важную роль в современной физике.

Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением. Например, некоторые физические величины, такие, как сила, скорость, ускорение и др., характеризуются не только числовым значением, но и направлением. В связи с этим указанные физические величины удобно изображать направленными отрезками.

Ве́ктор (от лат. vector , «несущий») — в простейшем случае математический объект , характеризующийся величиной и направлением. В геометрии вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом [1] .

Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними. Другой распространённый способ записи: выделение символа вектора жирным шрифтом.

Вектор в геометрии естественно сопоставляется переносу ( параллельному переносу ), что, очевидно, проясняет происхождение его названия ( лат. vector , несущий ).

Длина вектора – это и есть длина этого отрезка. Для обозначения длины вектора используются две вертикальные линии по обоим сторонам: |AB|.

Единичным называется вектор, длина которого равна 1. Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором. У такого вектора конец и начало совпадают. Нулевой вектор обычно обозначается как Понятия о векторах история. Длина нулевого вектора, или его модуль равен нулю.

Коллинеарные вектора – вектора, которые параллельны одной прямой или которые лежат на одной прямой.

Понятия о векторах история

Сонаправленные вектора. Два коллинеарных вектора a и b называются сонаправленными векторами только тогда, когда их направления совпадают друг другу (направлены в одну сторону): a↑↑b

Понятия о векторах история

Противоположно направленные вектора – два коллинеарных вектора a и b называются противоположно направленными векторами, только когда они направлены в разные стороны: a↑↓b.

Понятия о векторах история

Компланарные вектора – это те вектора, которые параллельны одной плоскости или те, которые лежат на одной плоскости. С компланарными векторами мы встретимся в 10-11 классах.

Понятия о векторах история

Равные вектора. Вектора a и b будут равными, если они будут лежать на одной либо параллельных прямых и их направления и длины одинаковые. То есть, такой вектор можно перенести параллельно ему в каждое место плоскости. Таким образом, два вектора равны, если они коллинеарные, сонаправленые и имеют одинаковые длины:

Понятия о векторах история

Понятия о векторах история

Действия над векторами.

Суммой векторов: , …называется вектор, получающийся после ряда последовательных сложений: к вектору прибавляется вектор , к полученному вектору прибавляется вектор и так далее.

Это правило многоугольника или правило цепи, которое формулируется из правила треугольника. Из произвольного начала О откладываем вектор Понятия о векторах история, из точки А 1 , как из начала, откладываем вектор Понятия о векторах история, из точки А 2 строим вектор Понятия о векторах историяи так далее. Вектор Понятия о векторах историяесть сумма векторов Понятия о векторах история.

Теорема. Для любых векторов , справедливы равенства:

1) + = + (переместительный закон).

2) ( + ) + = + ( + ) (сочетательный закон)

Эти законы сложения векторов позволяют нам находить сумму векторов в любом удобном порядке.

Умножение вектора на число

Для векторов существует три вида умножения векторов: скалярное и векторное произведение двух векторов и смешанное произведение трех векторов. Результатом первого и последнего есть число, а результатом векторного произведения – вектор.

Понятия о векторах история

Векторы в геометрии.

В геометрии под векторами понимают направленные отрезки. Эту
интерпретацию часто используют в компьютерной графике, строя карты освещения, с помощью нормалей к поверхностям. Так же с помощью векторов можно находить площади различных фигур, например треугольников и параллелограммов, а также объёмы тел: тетраэдра и параллелепипеда. Иногда с вектором отождествляют направление.

Скалярным произведением векторов и называется число, равное произведению длин этих векторов на косинус угла между ними: · = · cos . Если один из векторов нулевой, то скалярное произведение равно нулю.

Таким образом, длина (модуль) произведения векторов численно равна площади параллелограмма, построенного на векторах a и b

Смешанное произведение векторов называется скалярное произведение вектора на векторное произведение векторов и

Геометрический смысл смешанного произведения — модуль смешанного произведения численно равен объему параллелепипеда, образованного векторами ,.

Перечисленные выше свойства векторных операций во многом похожи на свойства сложения и умножения чисел. В этом состоит удобство векторных операций: вычисления с векторами выполняются по хорошо известным правилам. В то же время вектор – геометрический объект, и в определении векторных операций используются такие геометрические понятия, как длина и угол; этим и объясняется польза векторов в геометрии (и её приложений к физике и другим областям знания).

Однако для решения геометрических задач с помощью векторов необходимо прежде всего научиться «переводить» условие геометрической задачи на векторный «язык». После такого «перевода» осуществляются алгебраические вычисления с векторами, а затем полученное векторное решение снова «переводится» на геометрический «язык». В этом и состоит векторное решение геометрических задач.

C помощью векторов решаются задачи геометрии. Многие задачи не могли бы решаться иначе, либо решение их было очень затруднительным.

Приведём примеры некоторых из них:

Понятия о векторах история

Задача №2 Найти угол, лежащий против основания равнобедренного треугольника, если медианны, проведённые к боковым сторонам, взаимно перпендикулярны.

Понятия о векторах история

Задача №3 Дан равнобедренный треугольник МК N . Из вершины К проведена высота КР. Из вершин М и N проведены медианы MF и NE . КР =80, MN = 40. Найти MF и NE .

Понятия о векторах история

Маргарита Алигер, биография которой вызывает искренний интерес у поклонников ее творчества, – знаменитая советская поэтесса, удостоившаяся Сталинской премии второй степени за поэму «Зоя» о бесстрашном подвиге советской девушки Зои Космодемьянской. После семилетки училась в химическом техникуме. С детства писала стихи.

Понятия о векторах история

Векторы в физике.

О, физика, наука из наук!
Все впереди!
Как мало за плечами!
Пусть химия нам будет вместо рук,
Пусть станет математика очами .
Не разлучайте этих трех сестер,
Познания всего в подлунном мире.
Тогда лишь будет ум и глаз остер,
И знанье человеческое шире.

Векторы — мощный инструмент математики и физики. На языке векторов формулируются основные законы механики и электродинамики. Чтобы понимать физику, нужно научиться работать с векторами. В физике, как и в математике, вектор – это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент, импульс, напряженность электрического и магнитного полей.

Понятия о векторах история

Немецкий физик, математик и филолог. (1809-1877)

В области физики Грассману принадлежат работы по акустике и магнитному взаимодействию токов. Общие идеи Грассмана об абстрактных векторных пространствах привели его к открытию
важного положения – возможности рассматривать цветовые ощущения как трехмерные векторы, что лежит в основе современного учения о цвете. (Чёрный цвет имеет координаты (0,0,0), каждому цвету можно поставить в соответствие координаты точки трёхмерного пространства.
Интерпретация вектора, как параллельного переноса, позволяет естественным и интуитивно очевидным способом ввести операцию сложения векторов — как композиции (последовательного

применения) двух (или нескольких) переносов; то же касается и операции умножения вектора на число .

Понятия о векторах история

Джеймс Клерк Максвелл — английский физик, создатель классической электродинамики, один из
основоположников статистической физики, выдвинул идею электромагнитной природы света, установил первый статистический закон — закон распределения молекул по
скоростям, названный его именем. Альберт Эйнштейн однажды сказал, что » работа Джеймса клерка Максвелла изменила мир навсегда. «Действительно, Максвелл предоставил первую цветную фотографию и заложил основу для будущего развития телевизионных, радиолокационных, микроволновых и инфракрасных технологий.
Но в каждом учебном предмете вектор рассматривается так, как это удобно для изучаемого вопроса, но суть – одна.

Проведём сравнительный анализ понятия “вектор” и действий над векторами в математике и физике.

Понятия о векторах история

Мальчик массой 50 кг, стоя на гладком льду, бросает груз массой

8 кг под углом 60 0 к горизонту со скоростью 5 м/с. Какую скорость приобретет мальчик?

Понятия о векторах история

На парашютиста массой 90 кг в начале прыжка действует сила сопротивления воздуха, проекции которой на оси координат Х и Y равны 300 Н и 500 Н. Найти равнодействующую всех сил.

Понятия о векторах история

Вектор используются везде, даже там, где мы их не замечаем, например в литературе : вспомним басню Ивана Андреевича Крылова о том, как «лебедь, рак да щука везти с поклажей воз взялись». Басня утверждает, что «воз и ныне там», другими словами, что равнодействующая всех сил приложенных к возу равна нулю. А сила, как известно, векторная величина.

В химии. Нередко даже великими учеными высказывалась мысль, что химическая реакция является вектором. Вообще-то, под понятие «вектор» можно подвести любое явление. Вектором выражают действие или явление, имеющее четкую направленность в пространстве и в конкретных условиях, отражаемое его величиной. Направление вектора в пространстве определяется углами, образующимися между вектором и координатными осями, а длина (величина) вектора – координатами его начала и конца. Однако утверждение, что химическая реакция является вектором, до сих пор было неточно. Тем не менее, основой этого утверждения служит следующее правило: «Любой химической реакции отвечает симметричное уравнение прямой в пространстве с текущими координатами в виде количеств веществ (молей), масс или объемов».

Вектором (в биологии) называется организм, переносящий паразита от одного организма-хозяина к другому. Например, вши переносят возбудителей сыпного тифа, крысы – чумы. Вектор (в генетике) — молекула нуклеиновой кислоты, чаще всего ДНК, используемая в генетической инженерии для передачи генетического материала другой клетке.

Векторы в экономике

Одним из разделов высшей математики является линейная алгебра. Ее элементы широко применяются при решении разнообразных задач экономического характера. Среди них важное место занимает понятие вектора. Вектор представляет собой упорядоченную последовательность чисел. Числа в векторе с учетом их расположения по номеру в последовательности называются компонентами вектора. Отметим, векторы можно рассматривать в качестве элементов любой природы, в том числе и экономической. Предположим, что некоторая текстильная фабрика должна выпустить в одну смену 30 комплектов постельного белья, 150 полотенец, 100 домашних халатов, тогда производственную программу данной фабрики можно представить в виде вектора, где всё, что должна выпустить фабрика – это трехмерный вектор.

Векторы в психологии

На сегодняшний день имеется огромное количество информационных источников для самопознания, направлений психологии и саморазвития. И не трудно заметить, что все больше обретает популярность такое необычное направление, как системно-векторная психология, в ней существует 8 векторов. Системно-векторная психология позиционируется не как отрасль классической психологии или определенное течение, а как отдельная наука изучения типологии личности.

Вектор – это симбиоз физиологических и психологических качеств человека. Это — характер, темперамент, здоровье, привычки индивида.

Векторы в повседневной жизни

Мы обратили внимание, что векторы, помимо точных наук, встречаются нам каждый день, т.е. повседневно. Векторы – указатели, которые помогают нам быстро найти тот или иной объект, отдел и сэкономить время, или стрелки дорожных знаков.

Базовое понятие «вектор», рассмотренное нами на уроках геометрии в 9 классе, является основой для изучения, а главное понимания других школьных предметов: физики, химии, биологи, экономики. Мы считаем, что этот раздел математики очень пригодится тем, кто планирует получать образование в любой профессии.

1. Векторы необходимы нам для изучения не только математики, но и других наук.

2. Каждый образованный человек должен знать, что такое вектор, потому что сталкивается с этим понятием не только во время учёбы, но и в повседневной жизни.

Учебник Геометрия 7-9 авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев, Е.Г. Позняк, И.И. Юдина; издательство «Просвещение» 2016

Геометрия: задачи на готовых чертежах для подготовки к ГИА и ЕГЭ: 7-9/Э.Н. Балаян. Изд. 7-е –Ростов н/Д; Феникс, 2015.

Энциклопедический словарь юного математика для среднего и старшего школьного возраста.

Составитель А.П. Савин.- М.: Педагогика,, 1985.-352 с.,ил.

http ^// gruzdoff . ru / wiki /Вектор (математика)

Краткое описание документа:

В данной проектной работе ученики поставили цель — подготовить раздел в школьной энциклопедии. При подготовке проекта ими найдены интересные материалы применения векторов при изучении школьных предметов., а также в повседневной жизни. Обращаясь за помощью к преподавателям биологии, экономики, химии, они открыли для себя практическую сторону этого понятия. Самостоятельно сделали вывод о том, что изучение данного раздела геометрии необходимо каждому образованному человеку.

🎥 Видео

Видеоурок "Понятие вектора"Скачать

Видеоурок "Понятие вектора"

Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

Понятие вектора. Коллинеарные вектора. 9 класс.

10 класс, 38 урок, Понятие вектораСкачать

10 класс, 38 урок, Понятие вектора

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | Умскул

Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Все о векторах за 60 минут | Математика ОГЭ | Молодой РепетиторСкачать

Все о векторах за 60 минут | Математика ОГЭ | Молодой Репетитор

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

✓ Что такое вектор? Чем отличается понятие "вектор" от понятия "направленный отрезок" | Борис ТрушинСкачать

✓ Что такое вектор? Чем отличается понятие "вектор" от понятия "направленный отрезок" | Борис Трушин

Понятие вектора в пространстве. Видеоурок 16. Геометрия 10 классСкачать

Понятие вектора в пространстве. Видеоурок 16. Геометрия 10 класс

Понятие вектора | Геометрия 7-9 класс #76 | ИнфоурокСкачать

Понятие вектора  | Геометрия 7-9 класс #76 | Инфоурок

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэ

Понятие вектора. Коллинеарные векторы.Скачать

Понятие вектора. Коллинеарные векторы.

ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)Скачать

ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)
Поделиться или сохранить к себе: