Плоскость пересекает конус по окружности

Плоскость пересекает конус по окружности

Плоскость пересекает конус по окружности

Так как все образующие конуса равны, то его осевым сечением является равнобедренный треугольник, боковыми сторонами которого являются образующие конуса, а основанием — диаметр конуса. При этом все осевые сечения конуса — равные равнобедренные треугольники . На рисунке 168 осевым сечением конуса является треугольник ABP ( АР = ВР ). Угол АPВ называют углом при вершине осевого сечения конуса .

Конус, в осевом сечении которого правильный треугольник, называется равносторонним конусом.

Если секущая плоскость проходит через вершину конуса, пересекает конус, но не проходит через его ось, то в сечении конуса также получается равнобедренный треугольник (см. рис. 168: △ DCP ).

Так как конус — тело вращения, то любое сечение конуса плоскостью, перпендикулярной его оси (т. е. параллельной основанию конуса), есть круг, а сечение боковой поверхности конуса такой плоскостью — окружность этого круга; центром круга (окружности) является точка пересечения оси конуса и секущей плоскости (рис. 169).

Если секущая плоскость не параллельна плоскости основания конуса и не пересекает основание, то сечением боковой поверхности конуса такой плоскостью является эллипс (рис. 170). Поэтому эллипс называют коническим сечением .

Плоскость пересекает конус по окружности

Плоскость пересекает конус по окружностиЕсли сечением цилиндрической поверхности плоскостью может быть либо окружность, либо эллипс, либо две параллельные прямые, то сечением конической поверхности плоскостью может быть либо окружность (секущая плоскость перпендикулярна оси конической поверхности вращения и не проходит через её вершину, рис. 171, a ), либо эллипс (секущая плоскость не перпендикулярна оси конической поверхности и пересекает все её образующие, рис. 171, б ), либо парабола (секущая плоскость параллельна только одной образующей конической поверхности, рис. 171, в ), либо гипербола (секущая плоскость параллельна оси конической поверхности, рис. 171, г ), либо пара пересекающихся прямых (секущая плоскость проходит через вершину конической поверхности, рис. 171, д ). Поэтому невырожденные кривые второго порядка — окружность, эллипс, параболу и гиперболу называют коническими сечениями или коротко — кониками .

О конических сечениях можно прочитать в очерках «Элементарная геометрия», «Проективная геометрия» в конце этой книги. Плоскость пересекает конус по окружности

 ЗАДАЧА (3.047). Высота конуса равна радиусу R его основания. Через вершину конуса проведена плоскость, отсекающая от окружности основания дугу: а) в 60 ° ; б) в 90 ° . Найти площадь сечения.

Плоскость пересекает конус по окружности

Решени е. Рассмотрим случай а). Пусть плоскость α пересекает поверхность конуса с вершиной Р по образующим РА и РВ (рис. 172); △ АВР — искомое сечение. Найдём площадь этого сечения.

Хорда АВ окружности основания стягивает дугу в 60 ° , значит, △ AOB — правильный и АВ = R .

Если точка С — середина стороны АB, то отрезок PC — высота треугольника АВР. Поэтому S △ ABP = Плоскость пересекает конус по окружностиАВ • РC. Имеем: ОР = R (по условию); в △ A OB : ОС = Плоскость пересекает конус по окружности; в △ ОСР : CP = Плоскость пересекает конус по окружности= Плоскость пересекает конус по окружности.

Тогда S △ ABP = Плоскость пересекает конус по окружностиАВ • РС = Плоскость пересекает конус по окружности.

Ответ: а) Плоскость пересекает конус по окружности.

18.3. Касательная плоскость к конусу

Определение. Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса перпендикулярно осевому сечению, проведённому через эту образующую.

Плоскость пересекает конус по окружности

Говорят, что плоскость α касается конуса по образующей РА (рис. 173): каждая точка образующей РА является точкой касания плоскости α и данного конуса.

Плоскость пересекает конус по окружности

Через любую точку боковой поверхности конуса проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности конуса можно провести лишь одну плоскость, касательную к данному конусу в этой точке.

18.4. Изображение конуса

Плоскость пересекает конус по окружности

Для изображения конуса достаточно построить: 1) эллипс, изображающий окружность основания конуса (рис. 174); 2) центр О этого эллипса; 3) отрезок ОР, изображающий высоту конуса; 4) касательные прямые РА и PB из точки Р к эллипсу (их проводят с помощью линейки на глаз).

Для достижения наглядности изображения невидимые линии изображают штрихами.

Необходимо заметить, что отрезок АВ, соединяющий точки касания образующих и окружности основания конуса, ни в коем случае не является диаметром основания конуса, т. е. этот отрезок не содержит центра О эллипса. Следовательно, △ АBP — не осевое сечение конуса. Осевым сечением конуса является △ ACP, где отрезок AC проходит через точку О, но образующая PC не является касательной к окружности основания.

18.5. Развёртка и площадь поверхности конуса

Пусть l — длина образующей, R — радиус основания конуса с вершиной Р .

Плоскость пересекает конус по окружности

Плоскость пересекает конус по окружности

Поверхность конуса состоит из боковой поверхности конуса и его основания. Если эту поверхность разрезать по одной из образующих, например по образующей PA (рис. 175), и по окружности основания, затем боковую поверхность конуса развернуть на плоскости (рис. 176, a ), то получим развёртку поверхности конуса (рис. 176, б ), состоящую из: а) кругового сектора, радиус которого равен образующей l конуса, а длина дуги сектора равна длине окружности основания конуса; б) круга, радиус которого равен радиусу R основания конуса. Угол сектора развёртки боковой поверхности конуса называют углом развёртки конуса ; его численная величина равна отношению длины окружности основания конуса к его образующей (радиусу сектора развёртки):

α = Плоскость пересекает конус по окружности.

За площадь боковой поверхности конуса принимается площадь её развёртки. Выразим площадь боковой поверхности конуса через длину l его образующей и радиус R основания.

Площадь боковой поверхности — площадь кругового сектора радиуса длины l — вычисляется по формуле

S бок = Плоскость пересекает конус по окружностиα • l 2 , (1)

где α — величина угла (в радианах) сектора — развёртки. Учитывая, что α = Плоскость пересекает конус по окружности, получаем:

Таким образом, доказана следующая теорема.

Плоскость пересекает конус по окружности

Теорема 27. Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую. ▼

Площадь полной поверхности конуса равна сумме площадей его боковой поверхности и основания, т. е.

S кон = π Rl + π R 2 . (3)

Плоскость пересекает конус по окружности

Следствие. Пусть конус образован вращением пря м оугольного треугольника ABC вокруг катета АС (рис. 177). Тогда S бок = π • BC • АВ. Если D — середина отрезка АВ, то AB = 2 AD, поэтому

S бок = 2 π ВС • AD. (4)

Плоскость пересекает конус по окружности

Проведём DE ⟂ АB ( E ∈ l = AС ) . Из подобия прямоугольных треугольников ADE и ACB (у них общий угол А ) имеем

Плоскость пересекает конус по окружности= Плоскость пересекает конус по окружности⇒ BC • AD = DE • АС. (5)

Тогда соотношение (4) принимает вид

S бок = (2 π • DE ) • AC, (6)

т. е. площадь боковой поверхности конуса равна произведению высоты конуса на длину окружности, радиус которой равен длине серединного перпендикуляра, проведённого из точки на оси конуса к его образующей.

Это следствие будет использовано в п. 19.7.

18.6. Свойства параллельных сечений конуса

Плоскость пересекает конус по окружности Плоскость пересекает конус по окружности

Теоремa 28. Если конус пересечён плоскостью, параллельной основанию, то: 1) все образующие и высота конуса делятся этой плоскостью на пропорциональные части; 2) в сечении получается круг; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Плоскость пересекает конус по окружности

Доказательств о. 1) Пусть конус с вершиной Р и основанием F пересечён плоскостью α , параллельной плоскости β основания конуса и расположенной между Р и β (рис. 178).

Проведём высоту РО конуса, где точка О — центр круга F. Так как РО ⟂ β , α || β , то α ⟂ РО. Значит, в сечении конуса плоскостью α получается круг с центром в точке O 1 = α ∩ РО. Обозначим этот круг F 1 .

Рассмотрим гомотетию Плоскость пересекает конус по окружностис центром P, при которой плоскость β основания данного конуса отображается на параллельную ей плоскость α (при гомотетии плоскость, не проходящая через центр гомотетии, отображается на параллельную ей плоскость).

Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия Плоскость пересекает конус по окружностиотображает основание F конуса на его параллельное сечение — круг F 1 , при этом центр О основания отображается на центр О 1 круга F 1 (почему?). Кроме того, если РХ — произвольная образующая конуса, где Х — точка окружности основания, то при гомотетии Плоскость пересекает конус по окружноститочка X отображается на точку X 1 = РX ∩ α . Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:

Плоскость пересекает конус по окружности= Плоскость пересекает конус по окружности= k, (*)

где k — коэффициент гомотетии Плоскость пересекает конус по окружности, т. е. параллельное сечение конуса делит его образующие и высоту на пропорциональные части.

А поскольку гомотетия является подобием, то круг F 1 , являющийся параллельным сечением конуса, подобен его основанию.

Вследствие того что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии и k = PO 1 : Р О , где РO 1 и PO — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то

S сечен : S основ = k 2 = Плоскость пересекает конус по окружности: PO 2 .

18.7. Вписанные в конус и описанные около конуса пирамиды

Определение. Пирамида называется вписанной в конус, если у них вершина общая, а основание пирамиды вписано в основание конуса. В этом случае конус называется описанным около пирамиды.

Для построения изображения правильной пирамиды, вписанной в конус:

— строят изображение основания пирамиды — правильного многоугольника, вписанного в основание конуса;

— соединяют отрезками прямых вершину конуса с вершинами построенного многоугольника;

— выделяют видимые и невидимые (штрихами) линии изображаемых фигур.

На рисунках 179—182 изображена вписанная в конус пирамида, в основаниях которой лежит:

— прямоугольный треугольник (см. рис. 179);

Видео:Построение линии пересечения поверхности конуса с проецирующей плоскостьюСкачать

Построение линии пересечения поверхности конуса с проецирующей плоскостью

Построение проекций линий пересечения конуса плоскостью с примером

Построение проекций линий пересечения конуса плоскостью:

В зависимости от направления секущей плоскости в сечении конуса вращения могут получиться различные линии. Они называются ли­ниями конических сечений.

Если секущая плоскость проходит через вершину конуса, в его се­чении получается две прямые — образующие (треугольник) (рис. 5.29, а). В результате пересечения конуса плоскостью, перпендикулярной оси конуса, получается окружность (рис. 5.29, б). Если секущая плоскость наклонена к оси вращения конуса и не проходит через его вершину, в сечении конуса могут получиться эллипс, парабола или гипербола (рис. 5.29, в, г, д) — в зависимости от величины угла наклона секущей плоскости.

Эллипс получается в том случае, когда угол Плоскость пересекает конус по окружности

Если углы Плоскость пересекает конус по окружностиравны (то есть секущая плоскость параллельна одной из образующих конуса), в сечении получается парабола (рис. 5.29, г).

Если секущая плоскость направлена под углом, который изменяется в пределах Плоскость пересекает конус по окружностито в сечении получается гипербола. В этом случае секущая плоскость параллельна двум образующим конуса. Гипербола имеет две ветви, так как коническая поверхность двухполостная (рис. 5.29, д).

Плоскость пересекает конус по окружности

Известно, что точка принадлежит поверхности, если она принадлежит какой-нибудь линии поверхности. Для конуса наиболее простыми линиями являются прямые (образующие) и окружности. Следова­тельно, если требуется найти горизонтальные проекции точек А и В, принадлежащих поверхности конуса, то нужно через точки провести одну из этих линий.

Плоскость пересекает конус по окружности

Горизонтальную проекцию точки А найдем с помощью образующей. Для этого через точку А и вершину конуса S проведем вспомогательную фронтально — проецирующую плос­кость Плоскость пересекает конус по окружностиЭта плоскость пересекает конус по двум образующим Плоскость пересекает конус по окружностиИх фронтальные проекции совпадают. Строим горизонтальные проекции образующих. Затем проводим через точку а’ линию связи. На пересечении линии связи и горизонтальных проекций образующих определим горизонтальную проекцию точки.

Задача имеет два ответа: точки Плоскость пересекает конус по окружности. (рис. 5.30).

Горизонтальную проекцию точки В най­дем, построив окружность, на которой она лежит. Для этого через точку проведем горизонтальную плоскость Плоскость пересекает конус по окружностиПлоскость пересекает конус по окружности радиуса Плоскость пересекает конус по окружностиСтроим горизонтальную проекцию этой окружности. Через точку Плоскость пересекает конус по окружностипроведем линию связи до ее пересечения с окружностью. Зада­ча также имеет два ответа — точки Плоскость пересекает конус по окружности

Рассмотрим пример построения проекций линии пересечения конуса фронтально — проецирующей плоскостью Плоскость пересекает конус по окружностиВ этом случае в сечении получается эллипс (рис. 5.31).

Фронтальная проекция линии сечения совпадает с фронтальным следом плоскости Плоскость пересекает конус по окружности

Для удобства решения задачи обозначим крайние образующие конуса и определим характерные (опорные) точки.

Плоскость пересекает конус по окружности

Нижняя точка 1 лежит на образующей AS, верхняя — 2 на образующей BS. Эти точки определяют положение большой оси эллипса. Малая ось эллипса перпендикулярна большой оси. Чтобы найти малую ось, разделим отрезок 1-2 на две равные части. Точки 3 и 4 определяют малую ось эллипса. Точки 5 и 6, расположенные на образующих CS и DS, являются точками границы видимости для профильной плоскости проекций. Проекции точек 1, 2, 5 и 6 находятся на соответствующих проекциях образующих. Чтобы найти проекции точек 3 и 4, проводим дополнительную секущую плоскость Плоскость пересекает конус по окружностиОна рассекает конус по окружности радиуса Плоскость пересекает конус по окружностиНа этой окружности находятся проекции данных точек.

На горизонтальную плоскость проекций окружность проецируется в натуральную величину. Проведя линию связи, находим горизонтальные проекции точек 3 и 4. Профильные проекции находим, отложив на линии связи от оси конуса у координаты точек 3 и 4 (рис. 5.3 I).

Для точного построения эллипса недостаточно перечисленных то­чек. Поэтому необходимо определить дополнительные (случайные точ­ки). Проекции этих точек находим аналогично точкам 3 и 4. Их можно найти также проводя через эти точки образующие. Найдя проекции всех точек, соединяем их. Определяем видимость. На горизонтальной плоскости все точки, лежащие на поверхности конуса, видимы. На профильной -точки 5, З, 1,4, 6 видимы, остальные — нет.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Развертка поверхности конуса
  • Шаровая поверхность
  • Винтовые поверхности
  • Способ вспомогательных секущих плоскостей
  • Пирамида с вырезом
  • Коническая и цилиндрическая поверхности
  • Построение проекций линии пересечения цилиндра плоскостью
  • Развертка поверхности цилиндра

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)

Плоскость пересекает конус по окружности

Плоскость пересекает конус по окружностиПлоскость пересекает конус по окружности

рисунок 1 рисунок 2

Конусом (точнее, круговым конусом) называется тело, которое состоит из круга — основания конуса, точки, не лежащей в плоскости этого круга,— вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания (рис. 1) Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими, конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Наглядно прямой круговой конус можно представлять себе как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси (рис.2).
Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту.

рисунок 3 рисунок 4

Плоскость пересекает конус по окружности

рисунок 5 рисунок 6

Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса (рис. 3). В частности, равнобедренным треугольником является осевое сечение конуса. Это сечение, которое проходит через ось конуса (рис. 4).
Теорема. Плоскость, параллельная плоскости основания конуса, пересекает конус по кругу, а боковую поверхность — по окружности с центром на оси конуса.
Доказательство. Пусть $$beta$$ — плоскость, параллельная плоскости основания конуса и пересекающая конус (рис.5). Преобразование гомотетии относительно вершины конуса, совмещающее плоскость $$beta$$ с плоскостью основания, совмещает сечение конуса плоскостью $$beta$$ с основанием конуса. Следовательно, сечение конуса плоскостью есть круг, а сечение боковой поверхности – окружность с центром на оси конуса. Теорема доказана.

Задача №1: Конус пересечен плоскостью, параллельной основанию, на расстоянии d от вершины. Найдите площадь сечения, если радиус основания конуса R, а высота H.
Решение. Сечение конуса получается из основания конуса преобразованием гомотетии $$k = frac$$ . Поэтому радиус круга в сечении $$r = R cdot frac$$ . Следовательно, площадь сечения $$S = pi r^ = R^cdot(frac)^$$.

Плоскость, параллельная основанию конуса и пересекающая конус, отсекает от него меньший конус. Оставшаяся часть называется усеченным конусом (рис. 6).
Пирамидой, вписанной в конус, называется такая пирамида, основание которой есть многоугольник, вписанный в окруж¬ность основания конуса, а вершиной является вершина конуса (рис. 7). Боковые ребра пирамиды, вписанной в конус, яв¬ляются образующими конуса.

Плоскость пересекает конус по окружностирисунок 7Задача №2: У пирамиды все боковые ребра равны. Докажите, что она является вписанной в некоторый конус.
Решение. Опустим перпендикуляр SO из вершины пирамиды на плоскость основания (рис. 7) и обозначим длину боковых ребер пирамиды через l. Вершины основания удалены от точки О на одно и то же расстояние. Отсюда следует, что наша пирамида вписана в конус, у которого вершиной является вершина пирамиды, а основанием — круг с центром О и радиусом R.

Плоскость пересекает конус по окружностиПлоскость пересекает конус по окружности

рисунок 8 рисунок 9

Пирамидой, описанной около конуса, называется пирамида, у которой основанием служит многоугольник, описанный около основания конуса, а вершина совпадает с вершиной конуса (рис. 9). Плоскости боковых граней описанной пирамиды являются касательными плоскостями конуса.

В 16-м предложении
его произведения «О шаре и цилиндре» Архимед выводит формулу для площади боковой поверхности усеченого конуса, которую можно записать по-современному так: $$S = pi cdot l cdot (r+R)$$ . (1)

📹 Видео

Метод эксцентрических сферСкачать

Метод эксцентрических сфер

Усеченный конус: проекции сечения, изометрия и развертка поверхностиСкачать

Усеченный конус: проекции сечения, изометрия и развертка поверхности

Часть 2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ. Блок 10. Конус. Урок 3. Сечение плоскостью под углом к основанию.Скачать

Часть 2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ. Блок 10. Конус. Урок 3. Сечение плоскостью под углом к основанию.

Пересечение конуса и цилиндраСкачать

Пересечение конуса и цилиндра

11 класс, 18 урок, Усеченный конусСкачать

11 класс, 18 урок, Усеченный конус

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Пересечение конуса и сферы. Пошаговое видео. Инженерная графикаСкачать

Пересечение конуса и сферы. Пошаговое видео. Инженерная графика

Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)Скачать

Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)

Усеченный конус. 11 класс.Скачать

Усеченный конус. 11 класс.

Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 1Скачать

Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 1

Лекция 12. Пересечение поверхностей метод плоскостейСкачать

Лекция 12. Пересечение поверхностей метод плоскостей

11 класс, 28 урок, Сечения конической поверхностиСкачать

11 класс, 28 урок, Сечения конической поверхности

Пересечение конуса проецирующей плоскостьюСкачать

Пересечение конуса проецирующей плоскостью

16. Сечение конуса вращения плоскостьюСкачать

16.  Сечение конуса вращения плоскостью

Конус с вырезомСкачать

Конус с вырезом

Задачи 4.3.10 и 4.3.11.Скачать

Задачи 4.3.10 и 4.3.11.

Плоские сечения конусаСкачать

Плоские сечения конуса

Пересечение конуса и сферыСкачать

Пересечение конуса и сферы
Поделиться или сохранить к себе: