Задача 10 (ОГЭ — 2015)
На окружности с центром O отмечены точки A и B так, что ∠ AOB = 18°. Длина меньшей дуги AB равна 5. Найдите длину большей дуги окружности.
∠ AOB = 18°. Вся окружность составляет 360°. Поэтому ∠ AOB составляет 18/360 = 1/20 окружности.
Значит, и меньшая дуга AB составляет 1/20 всей окружности, поэтому большая дуга — это остальная часть, т.е. 19/20 окружности.
1/20 окружности соответствует длине дуги, равной 5. Тогда длина большей дуги равна 5*19 = 95.
Задача 10 (ОГЭ — 2015)
На окружности с центром O отмечены точки A и B так, что ∠ AOB = 40°. Длина меньшей дуги AB равна 50. Найдите длину большей дуги окружности.
∠ AOB = 40°. Вся окружность составляет 360°. Поэтому ∠ AOB составляет 40/360 = 1/9 окружности.
Значит, и меньшая дуга AB составляет 1/9 всей окружности, поэтому большая дуга — это остальная часть, т.е. 8/9 окружности.
1/9 окружности соответствует длине дуги, равной 50. Тогда длина большей дуги равна 50*8 = 400.
Задача 10 (ГИА — 2014)
Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.
По теореме Пифагора из прямоугольного треугольника AOB получим:
AO 2 = OB 2 +AB 2 ,
AO 2 = 27 2 +36 2 = 729+1296 = 2025,
Тогда диаметр равен 2R = 2*45 = 90.
Задача 10 (ГИА — 2014)
Точка O — центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC = 134° и ∠OAB = 75°. Найдите угол BCO. Ответ дайте в градусах.
∠ABC — вписанный, а значит равен половине дуги, на которую опирается. Поэтому большая дуга AC = 2*134 = 268°.
Тогда дуга ABC = 360° — 268° =92°.
∠AOC = 92°,так как он является центральным углом и опирается на дугу ABC.
Сумма углов в выпуклом четырехугольнике равна 360°, откуда получаем:
- Площадь круга и его частей. Длина окружности и ее дуг
- Основные определения и свойства
- Формулы для площади круга и его частей
- Формулы для длины окружности и её дуг
- Площадь круга
- Длина окружности
- Длина дуги
- Площадь сектора
- Площадь сегмента
- Как найти большую дугу окружности зная меньшую
- Как найти большую дугу окружности зная меньшую
- Площадь круга и его частей. Длина окружности и ее дуг
- Основные определения и свойства
- Формулы для площади круга и его частей
- Формулы для длины окружности и её дуг
- Площадь круга
- Длина окружности
- Длина дуги
- Площадь сектора
- Площадь сегмента
- Введение. Длина дуги окружности
Видео:8 класс, 33 урок, Градусная мера дуги окружностиСкачать

Площадь круга и его частей. Длина окружности и ее дуг
Основные определения и свойства. Число π |
Формулы для площади круга и его частей |
Формулы для длины окружности и ее дуг |
Площадь круга |
Длина окружности |
Длина дуги |
Площадь сектора |
Площадь сегмента |
Видео:Длина дуги окружности. 9 класс.Скачать

Основные определения и свойства
| Фигура | Рисунок | Определения и свойства | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Окружность | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Дуга | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Круг | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Сектор | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Сегмент | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Правильный многоугольник | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
| Окружность |
![]() |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны
Около любого правильного многоугольника можно описать окружность
Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.
Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.
Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:
Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.
Видео:ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать

Формулы для площади круга и его частей
| Числовая характеристика | Рисунок | Формула | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Площадь круга | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Площадь сектора | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Площадь сегмента | ![]() |
| Площадь круга |
![]() |

где R – радиус круга, D – диаметр круга


если величина угла α выражена в радианах

если величина угла α выражена в градусах


если величина угла α выражена в радианах

если величина угла α выражена в градусах
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Формулы для длины окружности и её дуг
| Числовая характеристика | Рисунок | Формула | |||||||||||
| Длина окружности | ![]() | ||||||||||||
| Длина дуги | ![]() |
| Длина окружности |
![]() |
где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

если величина угла α выражена в градусах
Видео:Окружнось, дуга, длина дуги, центральный угол.Скачать

Площадь круга
Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).
Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .
Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .
Таким образом, площадь круга радиуса R , обозначаемая S , равна
Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности
то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:
откуда вытекает формула для длины окружности радиуса R :
Следствие . Длина окружности радиуса 1 равна 2π.
Видео:НАЙДИ ДЛИНУ БОЛЬШЕЙ ДУГИСкачать

Длина дуги
Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Видео:Как найти длину дуги окружности центрального угла. Геометрия 8-9 классСкачать

Площадь сектора
Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Видео:На окружности с центром O отмечены точки A и B так ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Площадь сегмента
Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.
Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем
В случае, когда величина α выражена в в радианах, получаем
Видео:Длина окружности. Математика 6 класс.Скачать

Как найти большую дугу окружности зная меньшую
Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Как найти большую дугу окружности зная меньшую
Задача 10 (ОГЭ — 2015)
На окружности с центром O отмечены точки A и B так, что ∠ AOB = 18°. Длина меньшей дуги AB равна 5. Найдите длину большей дуги окружности.
∠ AOB = 18°. Вся окружность составляет 360°. Поэтому ∠ AOB составляет 18/360 = 1/20 окружности.
Значит, и меньшая дуга AB составляет 1/20 всей окружности, поэтому большая дуга — это остальная часть, т.е. 19/20 окружности.
1/20 окружности соответствует длине дуги, равной 5. Тогда длина большей дуги равна 5*19 = 95.
Задача 10 (ОГЭ — 2015)
На окружности с центром O отмечены точки A и B так, что ∠ AOB = 40°. Длина меньшей дуги AB равна 50. Найдите длину большей дуги окружности.
∠ AOB = 40°. Вся окружность составляет 360°. Поэтому ∠ AOB составляет 40/360 = 1/9 окружности.
Значит, и меньшая дуга AB составляет 1/9 всей окружности, поэтому большая дуга — это остальная часть, т.е. 8/9 окружности.
1/9 окружности соответствует длине дуги, равной 50. Тогда длина большей дуги равна 50*8 = 400.
Задача 10 (ГИА — 2014)
Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.
По теореме Пифагора из прямоугольного треугольника AOB получим:
AO 2 = OB 2 +AB 2 ,
AO 2 = 27 2 +36 2 = 729+1296 = 2025,
Тогда диаметр равен 2R = 2*45 = 90.
Задача 10 (ГИА — 2014)
Точка O — центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC = 134° и ∠OAB = 75°. Найдите угол BCO. Ответ дайте в градусах.
∠ABC — вписанный, а значит равен половине дуги, на которую опирается. Поэтому большая дуга AC = 2*134 = 268°.
Тогда дуга ABC = 360° — 268° =92°.
∠AOC = 92°,так как он является центральным углом и опирается на дугу ABC.
Сумма углов в выпуклом четырехугольнике равна 360°, откуда получаем:
Видео:Определение центра дуги окружности, построение окружности по 3 точкамСкачать

Площадь круга и его частей. Длина окружности и ее дуг
Основные определения и свойства. Число π |
Формулы для площади круга и его частей |
Формулы для длины окружности и ее дуг |
Площадь круга |
Длина окружности |
Длина дуги |
Площадь сектора |
Площадь сегмента |
Видео:+Как найти длину окружностиСкачать

Основные определения и свойства
| Фигура | Рисунок | Определения и свойства |
| Окружность | ![]() |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность
| Окружность |
![]() |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны
Около любого правильного многоугольника можно описать окружность
Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.
Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.
Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:
Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.
Видео:ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5Скачать

Формулы для площади круга и его частей
| Числовая характеристика | Рисунок | Формула |
| Площадь круга | ![]() |

где R – радиус круга, D – диаметр круга


если величина угла α выражена в радианах

если величина угла α выражена в градусах


если величина угла α выражена в радианах

если величина угла α выражена в градусах
| Площадь круга |
![]() |

где R – радиус круга, D – диаметр круга


если величина угла α выражена в радианах

если величина угла α выражена в градусах


если величина угла α выражена в радианах

если величина угла α выражена в градусах
Видео:КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать

Формулы для длины окружности и её дуг
| Числовая характеристика | Рисунок | Формула |
| Длина окружности | ![]() |
где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

если величина угла α выражена в градусах
| Длина окружности |
![]() |
где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

если величина угла α выражена в градусах
Видео:Радиус и диаметрСкачать

Площадь круга
Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).
Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .
Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .
Таким образом, площадь круга радиуса R , обозначаемая S , равна
Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Длина окружности
то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:
откуда вытекает формула для длины окружности радиуса R :
Следствие . Длина окружности радиуса 1 равна 2π.
Видео:Окружнось. Зависимость длины хорды, от длины дуги.Скачать

Длина дуги
Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Видео:Как измерить радиус детали по длине хорды и высоте сегментаСкачать

Площадь сектора
Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Видео:Углы, вписанные в окружность. 9 класс.Скачать

Площадь сегмента
Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.
Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем
В случае, когда величина α выражена в в радианах, получаем
Введение. Длина дуги окружности
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке мы вспомним, что такое окружность, круг и части круга и числовая окружность. Дадим определение радиана и рассмотрим окружность с единичным радиусом. Далее рассмотрим четыре четверти окружности и решим несколько примеров на нахождение длины дуги единичной окружности.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть уроки:




Основные определения и свойства. Число π

























