Площадь описанной около треугольника окружности всегда лежит внутри

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Площадь описанной около треугольника окружности всегда лежит внутриСерединный перпендикуляр к отрезку
Площадь описанной около треугольника окружности всегда лежит внутриОкружность описанная около треугольника
Площадь описанной около треугольника окружности всегда лежит внутриСвойства описанной около треугольника окружности. Теорема синусов
Площадь описанной около треугольника окружности всегда лежит внутриДоказательства теорем о свойствах описанной около треугольника окружности

Площадь описанной около треугольника окружности всегда лежит внутри

Видео:Центр описанной около треугольника окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Центр описанной около треугольника окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Площадь описанной около треугольника окружности всегда лежит внутри

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Площадь описанной около треугольника окружности всегда лежит внутри

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Площадь описанной около треугольника окружности всегда лежит внутри

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Площадь описанной около треугольника окружности всегда лежит внутри

Площадь описанной около треугольника окружности всегда лежит внутри

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Площадь описанной около треугольника окружности всегда лежит внутри

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Площадь описанной около треугольника окружности всегда лежит внутри

Площадь описанной около треугольника окружности всегда лежит внутри

Полученное противоречие и завершает доказательство теоремы 2

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Площадь описанной около треугольника окружности всегда лежит внутри

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Площадь описанной около треугольника окружности всегда лежит внутри,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Площадь описанной около треугольника окружности всегда лежит внутри

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Площадь описанной около треугольника окружности всегда лежит внутриВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаПлощадь описанной около треугольника окружности всегда лежит внутриОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиПлощадь описанной около треугольника окружности всегда лежит внутриЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиПлощадь описанной около треугольника окружности всегда лежит внутриЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовПлощадь описанной около треугольника окружности всегда лежит внутри
Площадь треугольникаПлощадь описанной около треугольника окружности всегда лежит внутри
Радиус описанной окружностиПлощадь описанной около треугольника окружности всегда лежит внутри
Серединные перпендикуляры к сторонам треугольника
Площадь описанной около треугольника окружности всегда лежит внутри

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаПлощадь описанной около треугольника окружности всегда лежит внутри

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиПлощадь описанной около треугольника окружности всегда лежит внутри

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиПлощадь описанной около треугольника окружности всегда лежит внутри

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиПлощадь описанной около треугольника окружности всегда лежит внутри

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовПлощадь описанной около треугольника окружности всегда лежит внутри

Для любого треугольника справедливы равенства (теорема синусов):

Площадь описанной около треугольника окружности всегда лежит внутри,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаПлощадь описанной около треугольника окружности всегда лежит внутри

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиПлощадь описанной около треугольника окружности всегда лежит внутри

Для любого треугольника справедливо равенство:

Площадь описанной около треугольника окружности всегда лежит внутри

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Площадь описанной около треугольника окружности всегда лежит внутри

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Площадь описанной около треугольника окружности всегда лежит внутри

Площадь описанной около треугольника окружности всегда лежит внутри.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Площадь описанной около треугольника окружности всегда лежит внутри

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Площадь описанной около треугольника окружности всегда лежит внутри

Какое из следующих утверждений верно?

1) Центр описанной около треугольника окружности всегда лежит внутри этого треугольника.

2) В параллелограмме есть два равных угла.

3) Площадь прямоугольного треугольника равна произведению длин его катетов.

В ответ запишите номер выбранного утверждения.

Рассмотрим каждое из утверждений:

1) «Центр описанной около треугольника окружности всегда лежит внутри этого треугольника» — неверно, центр описанной вокруг прямоугольного треугольника окружности, лежит на его стороне.

2) «В параллелограмме есть два равных угла» — верно, в параллелограмме есть 2 пары равных углов.

3) «Площадь прямоугольного треугольника равна произведению длин его катетов» — неверно, площадь прямоугольного треугольника равна половине произведения длин его катетов.

Видео:2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB

Площадь описанной около треугольника окружности всегда лежит внутри

Задание 20. Какое из следующих утверждений верно?

1) Центр описанной около треугольника окружности всегда лежит внутри этого треугольника.

2) В параллелограмме есть два равных угла.

3) Площадь прямоугольного треугольника равна произведению длин его катетов.

1) Не обязательно, есть тупоугольные треугольники, у которых центр описанной окружности вне его.

2) Да, противоположные углы параллелограмма равны.

3) Нет, площадь прямоугольного треугольника равна половине произведению длин его катетов.

🌟 Видео

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Как найти диаметр окружности, описанной около равнобедренного треугольникаСкачать

Как найти диаметр окружности, описанной около равнобедренного треугольника

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Задание 24 Площадь описанного треугольникаСкачать

Задание 24 Площадь описанного треугольника

Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

19 ЗАДАНИЕ ОГЭ ДИАГОНАЛИ РОМБА РАВНЫ?Скачать

19 ЗАДАНИЕ ОГЭ ДИАГОНАЛИ РОМБА РАВНЫ?

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

5.5.5. Задачи на верность утверждений. Решение геометрических задач. Подготовка к ОГЭ по математикеСкачать

5.5.5. Задачи на верность утверждений. Решение геометрических задач. Подготовка к ОГЭ по математике

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Разбор 16 и 23 задание ОГЭ по математике 2023 | УмскулСкачать

Разбор 16 и 23 задание ОГЭ по математике 2023 | Умскул

Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

Окружность и треугольникСкачать

Окружность и треугольник

ОГЭ/База Все прототипы задач на окружностиСкачать

ОГЭ/База Все прототипы задач на окружности
Поделиться или сохранить к себе: