Отрезки и прямые, связанные с окружностью |
Свойства хорд и дуг окружности |
Теоремы о длинах хорд, касательных и секущих |
Доказательства теорем о длинах хорд, касательных и секущих |
Теорема о бабочке |
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать
Отрезки и прямые, связанные с окружностью
Фигура | Рисунок | Определение и свойства | ||||||||||||||||||||||||||
Окружность | ||||||||||||||||||||||||||||
Круг | ||||||||||||||||||||||||||||
Радиус | ||||||||||||||||||||||||||||
Хорда | ||||||||||||||||||||||||||||
Диаметр | ||||||||||||||||||||||||||||
Касательная | ||||||||||||||||||||||||||||
Секущая |
Окружность |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
Конечная часть плоскости, ограниченная окружностью
Отрезок, соединяющий центр окружности с любой точкой окружности
Отрезок, соединяющий две любые точки окружности
Хорда, проходящая через центр окружности.
Диаметр является самой длинной хордой окружности
Прямая, имеющая с окружностью только одну общую точку.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания
Прямая, пересекающая окружность в двух точках
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Свойства хорд и дуг окружности
Фигура | Рисунок | Свойство |
Диаметр, перпендикулярный к хорде | Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. | |
Диаметр, проходящий через середину хорды | Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | |
Равные хорды | Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. | |
Хорды, равноудалённые от центра окружности | Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | |
Две хорды разной длины | Большая из двух хорд расположена ближе к центру окружности. | |
Равные дуги | У равных дуг равны и хорды. | |
Параллельные хорды | Дуги, заключённые между параллельными хордами, равны. |
Диаметр, перпендикулярный к хорде |
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Большая из двух хорд расположена ближе к центру окружности.
У равных дуг равны и хорды.
Дуги, заключённые между параллельными хордами, равны.
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Теоремы о длинах хорд, касательных и секущих
Фигура | Рисунок | Теорема | ||||||||||||||||
Пересекающиеся хорды | ||||||||||||||||||
Касательные, проведённые к окружности из одной точки | ||||||||||||||||||
Касательная и секущая, проведённые к окружности из одной точки | ||||||||||||||||||
Секущие, проведённые из одной точки вне круга |
Пересекающиеся хорды | ||
Касательные, проведённые к окружности из одной точки | ||
Касательная и секущая, проведённые к окружности из одной точки | ||
Секущие, проведённые из одной точки вне круга | ||
Пересекающиеся хорды |
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Видео:Равные хорды, равные дугиСкачать
Доказательства теорем о длинах хорд, касательных и секущих
Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).
Тогда справедливо равенство
Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).
Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство
Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).
Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство
Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).
Точка B – точка касания. В силу теоремы 2 справедливы равенства
откуда и вытекает требуемое утверждение.
Видео:Теорема об отрезках хорд и секущихСкачать
Теорема о бабочке
Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.
Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:
Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим
Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим
Воспользовавшись теоремой 1, получим
Воспользовавшись равенствами (1) и (2), получим
Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство
откуда вытекает равенство
что и завершает доказательство теоремы о бабочке.
Видео:Определение центра дуги окружности, построение окружности по 3 точкамСкачать
Равные хорды
Выясним, какими свойствами обладают равные хорды и равные дуги.
Равные хорды равноудалены от центра окружности.
Дано : окр. (O;R), AB и CD — хорды,
Соединим центр окружности с концами хорд.
I. Рассмотрим треугольники AOB и COD.
1) AB=CD (по условию)
2) OA=OB=OC=OD (как радиусы).
Следовательно, ∆AOB = ∆COD (по трём сторонам).
Из равенства треугольников следует равенство соответствующих углов: ∠A=∠C.
II. Рассмотрим прямоугольные треугольники AOF и COK.
2) ∠A=∠C (по доказанному).
Из равенства треугольников следует равенство соответствующих сторон: OF=OK.
Что и требовалось доказать .
Если хорды равноудалены от центра окружности, то они равны.
Дано: окр. (O;R), AB и CD — хорды,
Соединим центр окружности с концами хорд.
I. Рассмотрим прямоугольные треугольники OKD и OFB.
1)OF=OK (по условию)
2)OD=OB (как радиусы).
Из равенства треугольников следует равенство соответствующих сторон:
II. Рассмотрим треугольники AOB и COD.
Так как OA=OB=OC=OD (как радиусы), треугольники AOB и COD — равнобедренные с основаниями AB и CD и высотами OK и OF соответственно.
По свойству равнобедренного треугольника, OK и OF — медианы, то есть AF=BF, CK=DK, откуда AB=CD.
Что и требовалось доказать.
Равные хорды стягивают равные дуги.
Дано : окр. (O;R), AB и CD — хорды, AB=CD,
Соединим центр окружности с концами хорд.
Рассмотрим треугольники AOB и COD
1) AB=CD (по условию)
2) OA=OB=OC=OD (как радиусы).
Следовательно, ∆AOB = ∆COD (по трём сторонам).
Из равенства треугольников следует равенство соответствующих углов: ∠AOB=∠COD.
Значит и дуги, на которые опираются эти центральные углы, также равны: ∪AB=∪CD
Что и требовалось доказать .
Хорды, стягивающие равны дуги, равны.
Дано: окр. (O;R), AB и CD — хорды,
Соединим центр окружности с концами хорд.
Рассмотрим треугольники AOB и COD
Так как OA=OB=OC=OD (как радиусы), то треугольники AOB и COD — равнобедренные с основаниями AB и CD соответственно.
Так как ∪AB=∪CD (по условию), то ∠AOB=∠COD.
Из равенства треугольников следует равенство соответствующих сторон: AB=CD.
Видео:ГЕОМЕТРИЯ (урок 14) окружности, дуги, хордыСкачать
Отрезки стягивающие равные дуги окружности
ОКРУЖНОСТЬ И КРУГ. ЦИЛИНДР.
§ 71. ЗАВИСИМОСТЬ МЕЖДУ ХОРДАМИ И ДУГАМИ.
Докажем ряд теорем, устанавливающих зависимость между хордами и их дугами в одной и той же окружности или в равных окружностях.
При этом будем иметь в виду дуги, меньшие полуокружности.
Теорема 1. Равные дуги стя гиваются равными хордами.
Пусть дуга АВ равна дуге СК. Требуется доказать, что и хорда АВ равна хорде СК (черт. 314).
Доказательство. Соединим концы хорд с центром окружности — точкой О. Полученные треугольники АОВ и КОС равны, так как имеют по две соответственно равные стороны (радиусы одной окружности) и по равному углу, заключённому между этими сторонами (эти углы равны, как центральные, соответствующие равным дугам). Следовательно, АВ = СК.
Теорема 2 (обратная). Равные хорды стягивают равные дуги.
Пусть хорда АВ равна хорде СК. Требуется доказать, что дуга АВ равна дуге СК (черт. 314).
Доказательство. Соединим концы хорд с центром окружности— точкой О. Полученные треугольники АОВ и КОС равны по трём соответственно равным сторонам. Следовательно, равны углы АОВ и СОК; но углы эти центральные, соответствующие дугам АВ и СК; из равенства этих углов следует равенство дуг: АВ = СК.
Теорема 3. Большая дуга стягивается и большей хордой.
Пусть дуга АВ больше дуги СК (черт. 315).
Требуется доказать, что хорда АВ больше хорды СК.
Доказательство. Передвинем по окружности дугу СК так, чтобы точка К совместилась с точкой А, тогда точка С займёт положение С’ на дуге АВ между точками A и В, дуга СК примет положение дуги АС’, а хорда СК примет положение хорды АС’. Проведём радиусы в точки A, В и С’. Опустим из центра О перпендикуляры ОЕ и ОD на хорды АВ и АС’. В треугольнике ОFE отрезок ОЕ — катет , а отрезок ОF — гипотенуза, поэтому OF > ОЕ, а потому и OD > OE.
Рассмотрим теперь треугольники ОАD и ОАЕ. В этих треугольниках гипотенуза ОА общая, а катет ОЕ меньше катета ОD, тогда по следствию из теоремы Пифагора (§ 58) катет АЕ больше катета АD. Но эти катеты составляют половины хорд АВ и АС’, значит, и хорда АВ больше хорды АС’. Вследствие равенства хорд АС’ и СК получаем
АВ > СК.
Теорема 4 (обратная). Большая хорда стягивает и большую дугу.
Пусть хорда А В больше хорды СК.
Требуется доказать, что дуга АВ больше дуги СК (черт. 315). Между дугами АВ и СК может существовать только одно из трёх следующих соотношений:
АВ СК.
Но дуга AВ не может быть меньше дуги СК, так как тогда по прямой теореме хорда АВ была бы меньше хорды СК, а это противоречит условию теоремы.
Дуга АВ не может быть равна дуге СК, так как тогда хорда АВ равнялась бы хорде СК, а это тоже противоречит условию. Следовательно, АВ > СК.
💥 Видео
8 класс, 33 урок, Градусная мера дуги окружностиСкачать
Окружнось. Зависимость длины хорды, от длины дуги.Скачать
№659. Докажите, что градусные меры дуг окружности, заключенных между параллельными хордамиСкачать
Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать
№145. Отрезок МК — диаметр окружности с центром О, а МР и РК — равные хорды этой окружностиСкачать
Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать
Свойства хорд окружностиСкачать
Окружность. Урок №1Скачать
Окружность, диаметр, хорда геометрия 7 классСкачать
Пропорциональность отрезков хорд, касательных и секущих. Геометрия 9 классСкачать
11 класс, 41 урок, Две теоремы об отрезках, связанных с окружностьюСкачать
Вписанные углы в окружностиСкачать
Пропорциональные отрезки круга. 9 класс.Скачать