Отношение сторон прямоугольного треугольника

Отношение сторон прямоугольного треугольника

Свойство. Сумма двух острых углов прямоугольного треугольника равна 90 0

Свойство. Катет прямоугольного треугольника, лежащий против угла в 30 0 , равен половине гипотенузы.

Отношение сторон прямоугольного треугольника Отношение сторон прямоугольного треугольника

Теорема. Два прямоугольных треугольника равны, если катеты одного равны катетам другого.

Теорема. Два прямоугольных треугольника равны, если гипотенуза и катет одного равны гипотенузе и катету другого.

Теорема. Два прямоугольных треугольника равны, если острый угол и сторона одного равны острому углу и стороне другого.

Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать

8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольника

Теорема Пифагора

Теорема. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Отношение сторон прямоугольного треугольника Отношение сторон прямоугольного треугольника

Теорема, обратная теореме Пифагора. Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Соотношение углов и сторон прямоугольного треугольника

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Отношение сторон прямоугольного треугольника Отношение сторон прямоугольного треугольника

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Отношение сторон прямоугольного треугольника Отношение сторон прямоугольного треугольника

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Отношение сторон прямоугольного треугольника Отношение сторон прямоугольного треугольника

Важные значения! ИХ ОБЯЗАТЕЛЬНО ЗАПОМНИТЬ!

Отношение сторон прямоугольного треугольника

Высота прямоугольного треугольника, проведенного из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.

Отношение сторон прямоугольного треугольникаОтношение сторон прямоугольного треугольника Отношение сторон прямоугольного треугольника

Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой, проведенной из вершины прямого угла.

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Прямоугольные треугольники

Прямоугольный треугольник — это треугольник, у которого один угол прямой (равен $90$ градусов).

Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.

2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.

3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.

5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на $√2$

6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$

7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.

1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

В прямоугольном треугольнике $АВС$ для острого угла $В$:

5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.

6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.

7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$/$$/$$/$
$cosα$$/$$/$$/$
$tgα$$/$$1$$√3$
$ctgα$$√3$$1$$/$

Площадь прямоугольного треугольника равна половине произведения его катетов

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $АВ=10, АС=√$. Найдите косинус внешнего угла при вершине $В$.

Так как внешний угол $АВD$ при вершине $В$ и угол $АВС$ смежные, то

Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла $АВС$:

Катет $ВС$ мы можем найти по теореме Пифагора:

Подставим найденное значение в формулу косинуса

В треугольнике $АВС$ угол $С$ равен $90$ градусов, $sin⁡A=/, AC=9$. Найдите $АВ$.

Распишем синус угла $А$ по определению:

Так как мы знаем длину катета $АС$ и он не участвует в записи синуса угла $А$, то можем $ВС$ и $АВ$ взять за части $4х$ и $5х$ соответственно.

Применим теорему Пифагора, чтобы отыскать $«х»$

Так как длина $АВ$ составляет пять частей, то $3∙5=15$

В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:

Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.

В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.

Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Все формулы прямоугольного треугольника — примеры расчетов

Отношение сторон прямоугольного треугольника

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Формулы

Отношение сторон прямоугольного треугольника

1. Сумма острых углов прямоугольного треугольника равна 90 0 :

Отношение сторон прямоугольного треугольника

2. Синус острого угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе:

Отношение сторон прямоугольного треугольника

3. Косинус острого угла в прямоугольном треугольнике равен отношению прилежащего катета к гипотенузе:

Отношение сторон прямоугольного треугольника

4. Тангенс острого угла равен отношению противолежащего катета к прилежащему катету:

Отношение сторон прямоугольного треугольника

5. Котангенс острого угла равен отношению прилежащего катета к противолежащему катету:

Отношение сторон прямоугольного треугольника

6. Секанс острого угла равен отношению гипотенузы к прилежащему катету:

Отношение сторон прямоугольного треугольника

7. Косеканс острого угла равен отношению гипотенузы к противолежащему:

Отношение сторон прямоугольного треугольника

8. Катет, противолежащий углу, равен произведению гипотенузы на синус этого угла:

Отношение сторон прямоугольного треугольника

9. Катет, прилежащий углу, равен произведению гипотенузы на косинус этого угла:

Отношение сторон прямоугольного треугольника

10. Катет, противолежащий углу, равен произведению второго катета на тангенс угла:

Отношение сторон прямоугольного треугольника

Отношение сторон прямоугольного треугольника

11. Катет, прилежащий углу, равен произведению второго катета на котангенс угла:

Отношение сторон прямоугольного треугольника

Отношение сторон прямоугольного треугольника

12. Гипотенуза равна отношению катета к синусу противолежащего угла, и/или частному отношению катета и косинуса прилежащего угла (угла между ними):

Отношение сторон прямоугольного треугольника

13. Теорема Пифагора: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Отношение сторон прямоугольного треугольника

Отношение сторон прямоугольного треугольника

Отношение сторон прямоугольного треугольника

14. Медианы, проведенные к катетам прямоугольного треугольника:

Отношение сторон прямоугольного треугольника

15. Медиана, проведенная к гипотенузе:

Отношение сторон прямоугольного треугольника

16. Радиус окружности, описанной около прямоугольного треугольника:

Отношение сторон прямоугольного треугольника

Отношение сторон прямоугольного треугольника

17. Радиус окружности, вписанной в прямоугольный треугольник:

Отношение сторон прямоугольного треугольника

18. Площадь прямоугольного треугольника равна половине произведения катетов треугольника:

🎬 Видео

Соотношения между сторонами и углами треугольника. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. 7 класс.

Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать

Решение прямоугольных треугольников. Практическая часть. 8 класс.

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

Математика | Метрические соотношения в прямоугольном треугольникеСкачать

Математика | Метрические соотношения в прямоугольном треугольнике

Решение прямоугольных треугольниковСкачать

Решение прямоугольных треугольников

Задача про соотношение сторон. Геометрия 7 класс.Скачать

Задача про соотношение сторон. Геометрия 7 класс.

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать

ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого угла

8 класс, 26 урок, Пропорциональные отрезки в прямоугольном треугольникеСкачать

8 класс, 26 урок, Пропорциональные отрезки в прямоугольном треугольнике

7 класс, 33 урок, Теорема о соотношениях между сторонами и углами треугольникаСкачать

7 класс, 33 урок, Теорема о соотношениях между сторонами и углами треугольника

Задание 26 Отношение сторон и углов в прямоугольном треугольникеСкачать

Задание 26  Отношение сторон и углов в прямоугольном треугольнике

Соотношение сторон и углов прямоугольного треугольникаСкачать

Соотношение сторон и углов прямоугольного треугольника

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 класс

Соотношение сторон треугольника с углами 45-45-90Скачать

Соотношение сторон треугольника с углами 45-45-90
Поделиться или сохранить к себе: