Квадрат – ромб, у которого все углы прямые.
Квадрат – прямоугольник с равными сторонами.
Квадрат – параллелограмм, у которого все стороны равны и все углы равны.
- Свойства квадрата
- Признаки квадрата
- Описанная окружность
- Вписанная окружность
- Площадь квадрата
- Отношение площадей вписанной и описанной окружности квадрата
- Как определить площадь квадрата
- Формула нахождения площади квадрата
- Если известна длина стороны
- Если нам дана диагональ
- Если известен радиус вписанной окружности
- Если у нас есть радиус описанной окружности
- Если есть периметр
- S квадрата. Решение задач
- 🎥 Видео
Видео:ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематикаСкачать
Свойства квадрата
Все свойства параллелограмма, ромба, прямоугольника верны для квадрата.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Признаки квадрата
Четырехугольник будет являться квадратом, если выполняется хотя бы одно из условий:
1. Все стороны равны и среди внутренних углов есть прямой угол.
2. Диагонали равны, перпендикулярны и, пересекаясь, делятся пополам.
3. Четырехугольник обладает поворотной симметрией: он не изменится при повороте на 90˚.
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Описанная окружность
Около квадрата можно описать окружность. Сторона и радиус окружности связаны соотношением:
Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать
Вписанная окружность
В квадрат можно вписать окружность. Радиус вписанной окружности и сторона квадрата связаны соотношением:
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Площадь квадрата
Смотрите также таблицу-шпаргалку «Площади простейших фигур» здесь.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Видео:Задание 3 ЕГЭ по математике. Урок 47Скачать
Отношение площадей вписанной и описанной окружности квадрата
Во сколько раз площадь квадрата, описанного около окружности, больше площади квадрата, вписанного в эту окружность?
Пусть радиус окружности равен R. Тогда сторона описанного вокруг нее квадрата равна 2R, а его площадь, равная квадрату стороны, равна 4R 2 . Диагональ вписанного квадрата также равна 2R, поэтому его площадь, равная половине произведения диагоналей, равна 2R 2 . Следовательно, отношение площади описанного квадрата к площади вписанного равно 2.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Как определить площадь квадрата
О чем эта статья:
3 класс, 8 класс
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Найти отношение площади круга к площади вписанного в него квадрата. Геометрия 9 класс. Математика.Скачать
Формула нахождения площади квадрата
Квадрат — это фигура, которая является частным случаем прямоугольника, из-за чего можно заметить схожесть некоторых алгоритмов. Способ вычисления всегда зависит от исходных данных. Чтобы узнать площадь квадрата, необходимо знать специальные формулы, рассмотрим пять из них.
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Если известна длина стороны
Умножаем ее на то же число или возводим в квадрат.
S = a × a = a 2 , где S — площадь, a — сторона.
Эту формулу проходят в 3 классе. Остальные формулы третьеклассникам знать пока не нужно, но они пригодятся ученикам 8 класса.
Видео:ЕГЭ Задание 16 Отношение площадей подобных треугольниковСкачать
Если нам дана диагональ
Возводим ее в квадрат и делим на два.
S = d 2 : 2, где d — диагональ.
Видео:Геометрия 8 класс : Отношение площадей подобных треугольниковСкачать
Если известен радиус вписанной окружности
Умножаем его квадрат на четыре.
S = 4 × r 2 , где r — это радиус вписанной окружности.
Видео:СТОРОНА КВАДРАТА через РАДИУС вписанной и описанной окружностейСкачать
Если у нас есть радиус описанной окружности
Возведем его в квадрат и умножим на два.
S = 2 × R 2 , где R — это радиус описанной окружности.
У нас есть курсы обучения математике для учеников с 1 по 11 классы — записывайтесь!
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Если есть периметр
Мы должны возвести его в квадрат и разделить на 16.
S = Р 2 : 16, где Р — это периметр.
Периметр любого четырехугольника равен сумме длин всех его сторон.
Популярные единицы измерения площади:
- квадратный миллиметр (мм 2 );
- квадратный сантиметр (см 2 );
- квадратный дециметр (дм 2 );
- квадратный метр (м 2 );
- квадратный километр (км 2 );
- гектар (га).
Видео:Отношение площадей треугольниковСкачать
S квадрата. Решение задач
Мы разобрали пять формул для вычисления площади квадрата. А теперь давайте потренируемся!
Задание 1. Как найти площадь квадрата, диагональ которого равна 90 мм.
Воспользуемся формулой: S = d 2 : 2.
Подставим в формулу значение диагонали: S = 90 2 : 2 = 4050 мм 2 .
Ответ: 4050 мм 2 .
Задание 2. Окружность вписана в квадрат. Найдите площадь квадрата, если радиус окружности равен 24 см.
Если окружность вписана в квадрат, то сторона квадрата равна диаметру:
a = d
Диаметр окружности равен двум радиусам:
d = 2r
Получается, что сторона равна двум радиусам:
a = 2r
Используем формулу нахождения площади квадрата через сторону:
S = a 2
Так как из пункта 3 мы получили, что сторона равна двум радиусам, то формула площади квадрата примет вид:
S = (2r) 2
S = 4r 2
Теперь подставим значение радиуса в формулу площади:
S = 4 × 24 2 = 2304 см 2
🎥 Видео
Найдите отношение площадейСкачать
60. Отношение площадей подобных треугольниковСкачать
9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать
Найти площадь квадрата описанного около окружности радиуса 19Скачать
Квадрат в окружности или окружность в квадрате #ShortsСкачать
Площадь круга. Математика 6 класс.Скачать