Около остроугольного треугольника ABC с различными сторонами описали окружность с диаметром BN. Высота BH пересекает эту окружность в точке K.
а) Докажите, что
б) Найдите KN, если а радиус окружности равен 12.
a) Равные дуги стягивают равны хорды; вписанные углы, опирающиеся на равные дуги, равны. Поэтому достаточно доказать, что Пусть угол КВС равен α. Сумма острых углов прямоугольного треугольника BНC равна 90°, поэтому Центральный угол ВОА в два раза больше вписанного угла ВСА, опирающегося на ту же дугу АВ, поэтому Наконец, треугольник BОА равнобедренный, поскольку AO = OB как радиусы окружности, поэтому каждый из равных углов при его основании АВ равен Итак, поэтому Требуемое доказано.
б) Заметим, что Тогда:
Далее, как угол, опирающийся на диаметр. Диаметр равен удвоенному радиусу: Тогда как катет, лежащий против угла в 30° в прямоугольном треугольнике BKN.
Ответ:
Примечание Евгения Обухова (Москва).
Пункт а) это известный факт о том, что при изогональном сопряжении ортоцентр переходит в центр описанной окружности.
Примечание Дмитрия Гущина.
Ученик, занимающийся в математическом кружке или посещающий факультатив по математике, узнает в задаче стандартную конструкцию: радиус описанной окружности и высоту, проведенные из одной вершины треугольника. Эти отрезки переходят друг в друга при симметрии относительно биссектрисы треугольника, исходящей из той же вершины. Поскольку при такой симметрии стороны угла также переходят в друг друга, угол КВС переходит в угол ABN. Отсюда и следует равенство хорд AN и СК.
Прямые, проходящие через вершину угла и симметричные относительно биссектрисы этого угла, называются изогональными. Материалы для занятия со школьниками по данной теме можно взять, например, в статье Д. Прокопенко «Изогональное сопряжение и педальные треугольники».
Критерии оценивания выполнения задания | Баллы | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 | ||||||||||||||||||||||||||||||||||||||||||||||
Получен обоснованный ответ в пункте б) имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 | ||||||||||||||||||||||||||||||||||||||||||||||
Имеется верное доказательство утверждения пункта а) при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, Содержание
Видео:Окружность с центром на стороне AС треугольника ABC проходит через вершину С и касается прямой AB вСкачать Окружность, описанная около треугольникаВидео:Всё про углы в окружности. Геометрия | МатематикаСкачать Определение окружности, описанной около треугольникаОпределение 1. Окружностью, описанной около треугольника называется окружность, проходящей через все три вершины треугольника (Рис.1). При этом треугольник называется треугольником вписанным в окружность . Видео:Урок 3. №23 ОГЭ. Касательная. Окружность с центром на стороне AC касается АВ в точке В.Скачать Теорема об окружности, описанной около треугольникаТеорема 1. Около любого треугольника можно описать окружность. Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения серединных перпендикуляров к его сторонам. Проведем отрезки OA, OB и OC. Поскольку точка O равноудалена от точек A, B и C, то OA=OB=OC. Тогда окружность с центром O и радиусом OA проходит через все три вершины треугольника ABC и, следовательно, является окружностью, описанной около треугольника ABC. Из теоремы 1 следует, что центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника. Замечание 1. Около любого треугольника можно описать только одну окружность. Доказательство. Допустим, что около треугольника можно описать две окружности. Тогда центр каждой из этих окружностей равноудален от вершин треугольника и совпадает с точкой O пересечения серединных перпендикуляров сторон треугольника. Радиус этих окружностей равен расстоянию от точки O до вершин треугольника. Поэтому эти окружности совпадают. Видео:Построить описанную окружность (Задача 1)Скачать Окружность, описанная около треугольника. |
Серединный перпендикуляр к отрезку |
Окружность описанная около треугольника |
Свойства описанной около треугольника окружности. Теорема синусов |
Доказательства теорем о свойствах описанной около треугольника окружности |
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Серединный перпендикуляр к отрезку
Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).
Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.
Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.
Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .
Докажем, что отрезок AE длиннее отрезка EB . Действительно,
Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.
Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,
Полученное противоречие и завершает доказательство теоремы 2
Видео:ОГЭ. Задание 24. Геометрическая задача на вычислениеСкачать
Окружность, описанная около треугольника
Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .
Видео:найти угол треугольника вписанного в окружность с центром на сторонеСкачать
Свойства описанной около треугольника окружности. Теорема синусов
Фигура | Рисунок | Свойство | |
Серединные перпендикуляры к сторонам треугольника | Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке. Посмотреть доказательство | ||
Окружность, описанная около треугольника | Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Посмотреть доказательство | ||
Центр описанной около остроугольного треугольника окружности | Центр описанной около остроугольного треугольника окружности лежит внутри треугольника. | ||
Центр описанной около прямоугольного треугольника окружности | Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Посмотреть доказательство | ||
Центр описанной около тупоугольного треугольника окружности | Центр описанной около тупоугольного треугольника окружности лежит вне треугольника. | ||
Теорема синусов | |||
Площадь треугольника | |||
Радиус описанной окружности |
Серединные перпендикуляры к сторонам треугольника |
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Для любого треугольника справедливы равенства (теорема синусов):
,
где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.
Для любого треугольника справедливо равенство:
где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.
Для любого треугольника справедливо равенство:
где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.
Видео:2034 треугольник ABC вписан в окружность с центром в точке O точки O и C лежат в одной полуплоскостиСкачать
Доказательства теорем о свойствах описанной около треугольника окружности
Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).
Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:
Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.
Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).
При доказательстве теоремы 3 было получено равенство:
из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.
Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)
.
Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:
l = 2Rsin φ . | (1) |
Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).
Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.
Формула (1) доказана.
Из формулы (1) для вписанного треугольника ABC получаем (рис.7):
🔥 Видео
ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать
Треугольник ABC вписан в окружность с центром O Угол BAC равен 32°Скачать
7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Окружность с центром в точке O описана ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
ОГЭ. Задание 24. Геометрическая задача на вычисление.Скачать
2184 касательная в точках A и B к окружности с центром О пересекаютсяСкачать
Задание 24 Треугольник ОкружностьСкачать
Окружность, вписанная в треугольник. Как найти центр и радиус. Геометрия 7-8 классСкачать
Окружность описана около равнобедренного треугольника. Найти центральный уголСкачать
7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать
Строим вписанную в данный треугольник окружность (Задача 2).Скачать
Окружность и треугольникСкачать