Ортоцентр — точка пересечения высот треугольника или их продолжений. Традиционно обозначается латинской буквой H. В зависимости от вида треугольника ортоцентр может находиться внутри треугольника (в остроугольных), вне его (в тупоугольных) или совпадать с вершиной (в прямоугольных — совпадает с вершиной при прямом угле).
Пример
В приведенном ниже примере, O это ортоцентр..
Метод расчета ортоцентра треугольника
Пускай даны точки треугольника A(4,3), B(0,5) и C(3,-6).
Шаг 1
Найдем наклоны сторон AB, BC и CA используя формулу y2-y1/x2-x1. Наклон обозначим ‘m’.
- Наклон AB (m) = 5-3/0-4 = -1/2.
- Наклон BC (m) = -6-5/3-0 = -11/3.
- Наклон CA (m) = 3+6/4-3 = 9.
Шаг 2
Теперь, давайте вычислим наклон высоты AD, BE и CF который перпендикулярен сторонам BC, CA и AB соответственно. Наклон высоты = -1/наклон противоположной стороны треугольника.
- Наклон AD = -1/наклон BC = 3/11.
- Наклон BE = -1/наклон CA = -1/9.
- Наклон CF = -1/наклон AB = 2.
Шаг 3
После того, как мы нашли наклон перпендикуляров, мы должны найти уравнение линий AD, BE и CF. Давайте найдем уравнение линии AD с точкой (4,3) и наклоном 3/11.
Формула, для нахождения уравнения ортоцентра треугольника = y-y1 = m(x-x1) y-3 = 3/11(x-4)
1) Упростив выше приведенное уравнение, мы получим 3x-11y = -21
Кроме того, мы должны найти уравнение линий BE и CF. Уравнение для линии BE с точкой (0,5) и наклоном -1/9 = y-5 = -1/9(x-0)
2) Упростив выше приведенное уравнение, мы получим x + 9y = 45
Уравнение для линии CF с точкой (3,-6) и наклоном 2 = y+6 = 2(x-3)
3) Упростив выше приведенное уравнение, мы получим 2x — y = 12
Шаг 4
Найдем значение x и y решив 2 любых из 3 уравнений.
В этом примере, значение x и y (8.05263, 4.10526) которые являются координатами Ортоцентра (o).
Видео:Вычисляем высоту через координаты вершин 1Скачать
Точка пересечения высот треугольника — свойства, координаты и расположение ортоцентра
Видео:Уравнения стороны треугольника и медианыСкачать
Что такое высота
Если из вершины опустить перпендикуляр на противоположную сторону, получится отрезок, который именуется высотой. В равнобедренном треугольнике 2 отрезка равны, а в равностороннем равны все 3.
У фигур с углами 90 и более градусов высота попадает на противоположную сторону. В случае острого угла дело обстоит иначе. Прямая попадет только на продолжение противоположной стороны и будет находиться вне самой фигуры. Таким образом, если все углы острые, отрезки будут находиться внутри, как и ортоцентр. В тупоугольной фигуре два из трех отрезков будут проходить за его пределами — ортоцентр окажется вне фигуры.
Видео:Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать
Свойства ортоцентра
Свойства высот треугольника, пересекающихся в одной точке, давно изучены и описаны. Согласно основному из них, все 3 высоты всегда пересекаются в одном месте. Иногда, чтобы найти это место, отрезки нужно продлить, превратив в ортогональные прямые.
Ортоцентр по отношению к фигуре может быть расположен:
- внутри;
- снаружи;
- в вершине (у прямоугольных треугольников)
Ортоцентр — важная в геометрии характеристика, влияющая на нахождение золотого сечения.
Так называется маленький треугольник, расположенный внутри основного, находящийся на пересечении его трех параметров:
Золотое сечение может представлять собой не только треугольную фигуру, но и отрезок. В правильном треугольнике медианы, биссектрисы и высоты совпадают, значит, золотое сечение превращается в точку.
Полезные факты
Местонахождение ортоцентра имеет некоторые закономерности. Их знание принесет пользу при решении задач.
Пусть:
- H — ортоцентр в ABC;
- О — центр описанной окружности.
Тогда:
- окружности, описанные вокруг АБС, АНВ, CHB, HCA, равны:
- отрезок BH вдвое длиннее отрезка АС;
- середины отрезков AC и BH разделены расстоянием, равным радиусу описанной окружности.
Задача Фаньяно
Это классическая теорема. Она возникла в процессе поиска фигур с наименьшим периметром. Теорему доказал Фаньяно — итальянский математик и инженер. Это произошло еще в начале XVIII века.
Формулировка: ортотреугольник, то есть фигура, полученная соединением трех оснований треугольника, проведенный внутри остроугольного треугольника, имеет самый маленький периметр изо всех возможных, вписанных в данную фигуру.
Площадь ортотреугольника рассчитывается по формуле:
Здесь S — площадь, а, b, c — стороны.
Существует понятие ортоцентрической системы. Оно включает в себя 3 вершины и место пересечения их высот. Любая из данных четырех точек будет являться ортоцентром треугольника, образованного тремя остальными.
Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать
История изучения
Важное значение имеет место пересечения медиан или центр тяжести. Вместе с ортоцентром это еще одна «замечательная точка», которая была известна еще древним грекам. Так их стали называть начиная с 18 века, другое название «особенные».
Исследование этих точек стало началом для создания геометрии треугольника, основателем которой считается Леонард Эйлер. Ученый показал, что в любом треугольнике точки соединения высот, медиан и центр описанного круга находятся на одной линии, которую позже назвали прямой Эйлера.
В позапрошлом веке была обнаружена окружность 9 точек или Фейербаха. Она состоит из оснований медиан, высот и центров высот. Оказалось, что все эти точки лежат на общей окружности, центр которой находится на линии Эйлера.
Каждый отрезок, прочерченный из ортоцентра до соединения с описанной окружностью, всегда будет делиться линией Эйлера на 2 равные части.
Треугольник — удивительная фигура, изучением которой занимается целый раздел геометрии. Ортоцентр и его свойства имеют широкое применение в практической жизни, например, в строительстве. Этот показатель настолько важен и распространен, что существуют калькуляторы, позволяющие определить местонахождение точки по координатам вершин.
Видео:Вычисление медианы, высоты и угла по координатам вершинСкачать
Ортоцентр треугольника
Перпендикуляр, проведенный из любой вершины треугольника на противолежащую ей сторону, будет его высотой, а сторона — основанием. Если из каждой вершины треугольника провести высоту, то точка пересечения этих высот (с возможным их продлением) является ортоцентром треугольника, как правило, обозначается Н.
Высоту треугольника (h), опущенную на сторону а можно определить через сторону и угол: ha = csinβ = bsinγ, где а — основание треугольника, b, с — стороны, β, γ — углы прилежащие к основанию.
Также длину высоты можно вычислить через радиус описанной окружности R и стороны (b, с) / h = (b · с) / 2R.
Исходя из вида треугольника ортоцентр может располагаться:
- внутри треугольника (в случаях с остроугольными треугольниками);
- за его пределами (в тупоугольных треугольниках, где один угол больше 90);
- совпадать с вершиной прямого угла, если треугольник прямоугольный.
Ортоцентр треугольника и любая из его вершин будут ортоцентром треугольника, вершины которого находятся в остальных трех точках. Эти четыре точки считаются ортоцентрической системой точек. У окружностей, проведенных через 3 точки данной системы, радиусы равны.
Ортоцентр остроугольного тр-ка служит центром вписанной в его ортотреугольник окружности.
Центр описанной около треугольника окружности является ортоцентром треугольника, вершины которого расположены в серединах сторон данного тр-ка.
На прямой Эйлера располагается центр описанной окружности, центроид и ортоцентр треугольника.
Отрезок от вершины до ортоцентра (Н) в 2 раза больше отрезка от центра описанной окружности (О) до стороны, противоположной вершине.
Сумма квадратов отрезка от вершины до ортоцентра и стороны, расположенной против этой вершины, равняется учетверенному квадрату радиуса описанной окружности ® .
Пусть отрезок АН соединяет вершину А треугольника АВС с ортоцентром Н, а сторона а противолежит этой вершине, тогда: АН 2 + а 2 = 4 R 2 .
С помощью калькулятора можно быстро вычислить ортоцентр треугольника.
📹 Видео
№16 ЕГЭ 2023 по математике. Свойство ортоцентра за 5 минут. Четко и без водыСкачать
№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать
✓ Расстояние от вершины треугольника до точки пересечения высот | Ботай со мной #113 | Борис ТрушинСкачать
Высота, биссектриса, медиана. 7 класс.Скачать
9 класс, 4 урок, Простейшие задачи в координатахСкачать
Как найти расстояние от вершины треугольника до ортоцентра? Профиматика и ЕГЭматика знают ответ!Скачать
Как найти площадь треугольника, зная координаты его вершины.Скачать
ВСЕ свойства ортоцентра для №16 на ЕГЭ 2023 по математикеСкачать
Точка пересечения высот треугольника.Скачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Точка пересечения медиан в треугольникеСкачать
СВОЙСТВА ВЫСОТ И ОРТОЦЕНТРАСкачать
✓ Красивый факт про ортоцентр | Осторожно, спойлер! | Борис ТрушинСкачать
Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать
координаты центра тяжести треугольникаСкачать