Ориентированная площадь треугольника формула

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Знаковая площадь треугольника и предикат «По часовой стрелке»

Видео:9 класс, 12 урок, Теорема о площади треугольникаСкачать

9 класс, 12 урок, Теорема о площади треугольника

Определение

Пусть даны три точки Ориентированная площадь треугольника формула, Ориентированная площадь треугольника формула, Ориентированная площадь треугольника формула. Найдём значение знаковой площади Ориентированная площадь треугольника формулатреугольника Ориентированная площадь треугольника формула, т.е. площади этого треугольника, взятой со знаком плюс или минус в зависимости от типа поворота, образуемого точками Ориентированная площадь треугольника формула, Ориентированная площадь треугольника формула, Ориентированная площадь треугольника формула: против часовой стрелки или по ней соответственно.

Понятно, что, если мы научимся вычислять такую знаковую («ориентированную») площадь, то сможем и находить обычную площадь любого треугольника, а также сможем проверять, по часовой стрелке или против направлена какая-либо тройка точек.

Видео:✓ Новая формула площади треугольника | Ботай со мной #108 | Борис ТрушинСкачать

✓ Новая формула площади треугольника | Ботай со мной #108 | Борис Трушин

Вычисление

Воспользуемся понятием косого (псевдоскалярного) произведения векторов. Оно как раз равно удвоенной знаковой площади треугольника:

Ориентированная площадь треугольника формула

где угол Ориентированная площадь треугольника формулаберётся ориентированным, т.е. это угол вращения между этими векторами против часовой стрелки.

(Модуль косого произведения двух векторов равен модулю векторного произведения их.)

Косое произведение вычисляется как величина определителя, составленного из координат точек:

Ориентированная площадь треугольника формула

Раскрывая определитель, можно получить такую формулу:

Ориентированная площадь треугольника формула

Можно сгруппировать третье слагаемое с первыми двумя, избавившись от одного умножения:

Ориентированная площадь треугольника формула

Последнюю формулу удобно записывать и запоминать в матричном виде, как следующий определитель:

Ориентированная площадь треугольника формула

Видео:Площадь по теореме Герона #математика #площадь #треугольник #герона #егэ #огэ #найтиплощадь #теоремаСкачать

Площадь по теореме Герона #математика #площадь #треугольник #герона #егэ #огэ #найтиплощадь #теорема

Реализация

Функция, вычисляющая удвоенную знаковую площадь треугольника:

Функция, возвращающая обычную площадь треугольника:

Функция, проверяющая, образует ли указанная тройка точек поворот по часовой стрелке:

Функция, проверяющая, образует ли указанная тройка точек поворот против часовой стрелки:

Видео:Площадь треугольника. Формула площади. Геометрия 8 класс.Скачать

Площадь треугольника. Формула площади. Геометрия 8 класс.

Ориентированная площадь треугольника формула

Ориентированной площадью треугольника ABC называется величина (ABC), равная его площади, взятой со знаком плюс, если обход треугольника в порядке ABCA совершается против часовой стрелки и со знаком минус, если по часовой стрелке (рис. 1). Таким образом, строго говоря, ориентированная площадь (ABC) определена не для треугольника как такового, а для «ориентированного треугольника», т.е. треугольника с заданным порядком вершин, причем (ABC) = (CAB) = (BCA) = –(ACB) = –(BAC) = –(CBA).

Ориентированная площадь треугольника формулаОриентированная площадь треугольника формула

С помощью ориентированной площади во многих ситуациях можно избавиться от необходимости рассматривать разные расположения точек. Например, если точка D лежит внутри треугольника ABC (рис. 2), то справедливо равенство:

(которое, в частности, используется при выводе формулы площади треугольника через радиус вписанной окружности); если D лежит вне треугольника, но внутри угла ABC, то SABC = SDAB + SDBCSDCA, для других расположений получатся другие наборы знаков в левой части. Равенство для ориентированных площадей
(ABC) = (DAB) + (DBC) + (DCA) (1)
справедливо при любом расположении точек A, B, C, D на плоскости. Также имеет место векторное равенство
Ориентированная площадь треугольника формула,
из которого следует, что барицентрические координаты точки D относительно треугольника ABC пропорциональны ориентированным площадям треугольников DBC, DCA, DAB.

Если координаты точек A и B равны (xA;yA) и (xB; yB), то ориентированная площадь треугольника OAB, где O – начало координат, равна
(OAB) =Ориентированная площадь треугольника формула( xA yByA xB)
(при этом треугольник с вершинами (0; 0), (1; 0), (0; 1) считается положительно ориентированным). Эта формула позволяет написать выражение для площади произвольного треугольника ABC через координаты его вершин: для этого надо записать в координатах правую часть формулы (1), взяв в ней D = O). Приведем обобщение этой формулы для произвольного n-угольника A1A2. An:

(A1A2. An) = Ориентированная площадь треугольника формула((x1y2y1x2) + (x2y3y2x3) + . + (xn – 1yn yn – 1xn) + (xny1ynx1)), (2)

где (xi; yi) – координаты точки Ai. Можно показать, что модуль этой величины равен (обычной) площади n-угольника, а знак определяется направлением обхода вершин в порядке A1A2 – … – AnA1, как и в случае треугольника. При этом правая часть (2) не зависит от того, с какой вершины начинать обход – существенна только последовательность вершин. Если же поменять порядок на обратный – AnA n – 1. A1, то и знак правой части равенства (2) изменится на обратный (а модуль не изменится).

«Направление против часовой стрелки» не является математически строгим понятием, поэтому и данное в начале определение нестрогое. Формализовать наглядное представление о «направлении обхода», или «ориентации», многоугольника довольно сложно. Наиболее простой путь – непосредственно использовать формулу (2) как определение ориентированной площади; тогда многоугольник можно считать положительно или отрицательно ориентированным в зависимости от знака его ориентированной площади. Нетрудно проверить, что при этом будут выполняться интуитивно понятные утверждения об ориентации, например: два треугольника в общей стороной – ABC и ABD будут одинаково ориентированы тогда и только тогда, когда вершины C и D лежат по одну сторону от AB, при осевой симметрии ориентация многоугольника меняется на противоположную и др.

Видео:Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭСкачать

Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭ

Вычислительная геометрия, или как я стал заниматься олимпиадным программированием.Часть 1

Здравствуйте, уважаемые хабравчане! Это моя вторая статья, и мне хотелось бы поговорить о вычислительной геометрии.

Немного истории

Я являюсь студентом уже 4 курса математического факультета, и до того как я начал заниматься программированием, я считал себя математиком на 100 процентов.

В конце первого курса мой преподаватель по информатике, который занимается олимпиадным программированием, обратил на меня внимание. Им как раз не хватало одного математика в команду. Так потихоньку меня начали приучать к олимпиадному программированию. Скажу честно, для меня это было очень сложно: для человека, который узнал слово Delphi на первом курсе. Однако мой преподаватель оказался очень грамотным специалистом и нашел хороший подход ко мне. Он начал давать мне математические задачи, который я сначала решал чисто математически, а уже потом писал код (с грехом пополам).

Мне очень нравится подход моего преподавателя: «разберись с этой темой, а потом расскажи нам, да так чтоб мы все поняли».

Итак, первой на самом деле важной задачей, с которой мне поручили разобраться, было именно вычислительная геометрия, необходимо было разобраться в типичных задач этого раздела информатики. И я решил подойти к этой задаче со всей ответственностью.

Я помню, как долго мучился с этими задачами, чтобы они прошли все тесты на сайте informatics.mccme. Зато теперь я очень рад, что прошел через все испытания и знаю, что же такое задачи вычислительной геометрии.

Вступление

«Вычислительная геометрия – это раздел информатики, изучающий алгоритмы решения геометрических задач. Такие задачи возникают в компьютерной графике, проектировании интегральных схем, технических устройств и др. Исходными данными в такого рода задачах могут быть множество точек, набор отрезков, многоугольники и т.п. Результатом может быть либо ответ на какой-то вопрос, либо какой-то геометрический объект».

Поскольку статья является достаточно большой я решил разбить ее на две части: первая часть посвящена многоугольникам, вторая – взаимному расположению различных геометрических объектов.

Немного теории о векторах

Отрезок, для которого указано, какой из его концов считается началом, а какой — концом, называется вектором. Любая точка пространства также может рассматриваться как вектор. Такой вектор называется нулевым. Начало и конец нулевого вектора совпадают, и он не имеет какого-либо определенного направления.
Ориентированная площадь треугольника формула

Длиной ненулевого вектора AB называется длина отрезка AB. Длина нулевого вектора считается равной нулю.
Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Если два ненулевых вектора AB и CD коллинеарны и если при этом лучи AB и CD сонаправлены, то векторы AB и CD называются сонаправленными, а если эти лучи не являются сонаправленными, то векторы AB и CD называются противоположно направленными. Нулевой вектор принято считать сонаправленным с любым вектором.

Скалярное произведение векторов

Скалярное произведение векторов — это число, равное произведению длин этих векторов на косинус угла между ними.
(a, b) = |a||b|cos∠(a, b)
Ориентированная площадь треугольника формула
Если векторы заданы своими координатами a(x1, y1), b(x2, y2) то скалярное произведение (a, b) = x1x2 + y1y2.

Косое произведение векторов

Псевдоскалярным или косым произведением векторов на плоскости называется число
[a, b] = |a||b|sinθ
где Ориентированная площадь треугольника формула— угол вращения (против часовой стрелки) от a к b. Если хотя бы один из векторов a и b нулевой, то полагают [a, b] = 0.
Если векторы заданы своими координатами a(x1, y1), b(x2, y2) то косое произведение [a, b] = x1y2 — x2y1.
Геометрически косое произведение векторов представляет собой ориентированную площадь параллелограмма, натянутого на эти вектора.
Ориентированная площадь треугольника формула

Косое произведение векторов в задачах вычислительной геометрии занимает такое же почетное место, как рекурсии в комбинаторике. Это своего рода жемчужина вычислительной геометрии. Практически каждая задача вычислительной геометрии имеет более простое решение с помощью косового произведение вместо лобового решения.

А теперь займемся практикой

Начнем с треугольников
Ориентированная площадь треугольника формула

Задача №1

Задача очень простая, а именно: по введенным трем числам a, b, c определить существует ли треугольник с такими сторонами.

Решение
Понятно, что здесь нужно только проверить неравенство треугольника: a + b > c, a + c > b, b + c > a. Интересно, при изучении неравенства треугольника только ли у меня возник вопрос: не могут ли отрицательные числа тоже удовлетворять этим трем неравенствам? Оказывается, нет! Если мы сложим каждое неравенство, то получим a > 0, b > 0, c > 0. Поэтому неравенство треугольника является необходимым и достаточным условием существования треугольника.

Задача №2

Задача является очень похожей на предыдущую с той разницей, что треугольник задан не сторонами, а координатами вершин.

Решение
С первого взгляда решение кажется очевидным: вычислить стороны треугольника и свести задачу к предыдущей. Однако поскольку расстояние между двумя точками A(x1, y1), B(x2, y2) вычисляется по формуле √(x1-x2) 2 +(y1-y2) 2 то при извлечении корня возможна потеря точности, что плохо скажется на проверке неравенства треугольника. Оказывается, что если треугольник задан координатами своих вершин, то вычислять длины его сторон и проверять неравенство треугольника не требуется. В этом случае треугольника не существует тогда и только тогда, когда данные три точки лежат на одной прямой. А это легко проверяется через косое произведение векторов. Если оно равно нулю, то векторы коллинеарные, то есть все три точки лежат на одной прямой.
Ориентированная площадь треугольника формула

Во всех следующих задачах будем считать, что треугольник существует, поскольку процедуру проверки существования треугольника мы только что рассмотрели.

Задача №3

Треугольник задан своими сторонами. Определить тип треугольника: тупоугольный, прямоугольный или остроугольный.

Решение
Вспомним, что представляют собой каждый вид треугольника.

Ориентированная площадь треугольника формула

Из курса геометрии известно, что напротив большей стороны лежит больший угол (он нам и нужен). Поэтому если мы выясним чему равен больший угол, то поймем тип треугольника:

  1. Угол больше 90° – треугольник тупоугольный
  2. Угол меньше 90°– треугольник остроугольный
  3. Угол равен 90°– треугольник прямоугольный

Воспользуемся теоремой косинусов:
Ориентированная площадь треугольника формула

Очевидно, что если косинус угла больше нуля то угол меньше 90°, если он равен нулю, то угол равен 90°, если он меньше нуля, то угол больше 90°. Однако немного поразмыслив можно понять, что вычислять косинус угла не обязательно, необходимо учесть лишь его знак:

  • Если cosα > 0, то a 2 2 + c 2 – треугольник остроугольный
  • Если cosα = 0, то a 2 = b 2 + c 2 – треугольник прямоугольный
  • Если cosα 2 > b 2 + c 2 – треугольник тупоугольный

где a – большая сторона.

Задача №4

Задача аналогична предыдущей задаче, только треугольник задан не своими сторонами, а координатами вершин.

Решение
Аналогично задаче 2 можно сказать, что эта задача полностью сводится к предыдущей задаче (так оно и есть). Однако, как и во второй задаче, решение можно упростить. Вообще, если треугольник задан координатами своих вершин, то всегда легче работать с ним через вектора, нежели вычислять стороны. Аналогично предыдущей задаче, необходимо определить каким является наибольший из углов треугольника. Вид угла легко определяется по знаку скалярного произведения образующих его векторов: оно положительно для острого угла, равно нулю для прямого угла и отрицательно для тупого угла. Поэтому необходимо посчитать все три скалярных произведения и перемножить их и по знаку данного числа можно судить о типе треугольника.

Задача №5

По данным сторонам треугольника найти его площадь.

Решение
Очевидно решение, заключается в применение формулы Герона.
Ориентированная площадь треугольника формула
Кстати, никого не интересовало доказательство этой формулы?

Задача №6

Вычислить площадь треугольника заданного координатами своих вершин.

Решение
Не будем говорить о решении, которое сводится к предыдущей задачи, а попробуем воспользоваться геометрическим смыслом косового произведения. Геометрически косое произведение двух векторов определяет ориентированную площадь параллелограмма натянутого на эти вектора. Поскольку диагональ параллелограмма разбивает его на два равновеликих треугольника, то можем найти площадь нашего треугольника, как половину площади параллелограмма.
Для векторов a(x1, y1), b(x2, y2)
Ориентированная площадь треугольника формула
S = (x1y2 — x2y1) / 2 — ориентированная площадь треугольника

Задача №7

Дана точка и треугольник заданный координатами своих вершин. Определить лежит ли точка внутри, на границе или вне этого треугольника.

Решение
У этой задачи есть два принципиально разных решения. Начнем с наименее привлекательного.

Метод площадей

Ориентированная площадь треугольника формула
Если сумма площадей треугольников AKB, AKC, BKC (не ориентированных, а «обычных») больше площади треугольника ABC точка лежит вне треугольника. Если же сумма первых трех площадей равна четвертой, то нужно проверить, не равна ли нулю одна из трех площадей. Если равна, то точка лежит на границе треугольника, иначе – внутри.
Вычислять площади треугольников, естественно, надо через косое произведение векторов. Этот метод не очень хороший. Поскольку здесь используются сравнение чисел с плавающей точкой, а это в свою очередь может привести к принятию неверного решения при сравнении. Второй метод опять таки опирается на вектора, он намного эффективнее во всех отношениях.

Проверка полуплоскостей

Если хотя бы одна из сторон треугольника «разводит» противолежащую ей вершину и точку по разным полуплоскостям, то точка лежит вне треугольника. Иначе, если точка принадлежит хотя бы одной из прямых, содержащих стороны треугольника, то она находится на границе треугольника. Иначе точка лежит внутри треугольника.
Ориентированная площадь треугольника формула
В первом примере сторона AB разводит вершину C и точку K по разным полуплоскостям, поэтому точка лежит снаружи.

Задача №8

Вычисление площади многоугольника заданного координатами своих вершин.

Решение
Под многоугольником будем подразумевать простой многоугольник, то есть без самопересечений. При этом он может быть как выпуклым, так и не выпуклым.

Данную задачу можно решить двумя способами: вычисляя ориентированные площади трапеций и треугольников.

Метод трапеций

Ориентированная площадь треугольника формула
Для того чтобы посчитать площадь многоугольника нужно разбить его на трапеции, так как это показано на рисунке, а затем сложить ориентированные площади полученных трапеций это будет ориентированной площадью исходного многоугольника.
S = SA1 A2 B2 B1 + SA2 A3 B3 B2 + SA3 A4 B5 B3 + SA4 A5 B6 B5 + SA5 A6 B4 B6 + SA6 A1 B1 B4
Площади трапеций считаем по известной формуле: полусумма оснований на высоту
SA1 A2 B2 B1 = 0.5 * (A1B1 + A2B2) *(B2 — B1)

Поскольку полученная площадь является ориентированной, необходимо вычислить ее модуль.

Метод треугольников

Ориентированная площадь треугольника формула

Как вы видите задача вычисления площади многоугольника достаточна проста. Не знаю, почему, но мне больше нравится решать эту задачу методом разбиения на трапеции (наверно потому, что на всех олимпиадах я ее так решал). Тем более, что при втором решении площади треугольников надо вычислять через косое произведение. О формуле Герона надо забыть.

Задача №9

Многоугольник задан координатами своих вершин в порядке его обхода. Необходимо проверить является ли многоугольник выпуклым.

Решение
Напомню, что многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой, содержащей его сторону.
Ориентированная площадь треугольника формула

Задача опять сводится к вычислению косового произведения векторов, а именно у выпуклого многоугольника знаки косых произведений [Ai Ai+1, Ai+1 Ai+2] либо положительны, либо отрицательны. Поэтому если мы знаем направление обхода, то знак косых произведений для выпуклого многоугольника одинаков: он неотрицателен при обходе против часовой стрелки и неположителен при обходе по часовой стрелки.

Задача №10

Многоугольник (не обязательно выпуклый) на плоскости задан координатами своих вершин. Требуется подсчитать количество точек с целочисленными координатами, лежащих внутри него (но не на его границе).

Решение
Для решения этой задачи рассмотрим вспомогательную задачу: отрезок задан координатами своих концов, являющихся целыми числами. Необходимо посчитать количество целочисленных точек лежащих на отрезке. Понятно, что если отрезок вертикальный или горизонтальный, то необходимо вычесть координаты концов и добавить единицу. Интерес представляет случай, когда отрезок не является вертикальным или горизонтальным. Оказывается в этом случае необходимо достроить отрезок до прямоугольного треугольника и ответом будет число равное наибольшему общему делителю длин катетов этого треугольника плюс единица.
Ориентированная площадь треугольника формула

Для любого многоугольника с целочисленными координатами вершин справедлива формула Пика: S = n + m/2 — 1, где S – площадь многоугольника, n – количество целых точек лежащих строго внутри многоугольника, m – количество целых точек лежащих на границе многоугольника. Поскольку площадь многоугольника мы знаем как вычислять, то S известно. Так же мы можем вычислить количество целых точек лежащих на границе многоугольника, поэтому в формуле Пика остается лишь одна искомая неизвестная которую мы можем найти.
Рассмотрим пример:
Ориентированная площадь треугольника формула
S = 16 + 4 + 4,5 + 6 + 1 + 2 = 33,5
m = 15
n = 33,5 – 7,5 +1 = 27 — точек лежит строго внутри многоугольника
Вот так вот решается эта задачка!

Вот и все! Надеюсь, Вам понравилась статья, и я напишу ее вторую часть.

🎬 Видео

ПЛОЩАДЬ ТРЕУГОЛЬНИКА формула 9 класс геометрия АтанасянСкачать

ПЛОЩАДЬ ТРЕУГОЛЬНИКА формула 9 класс геометрия Атанасян

8 класс, 14 урок, Площадь треугольникаСкачать

8 класс, 14 урок, Площадь треугольника

Геометрия 8 класс (Урок№10 - Площадь треугольника.)Скачать

Геометрия 8 класс (Урок№10 - Площадь треугольника.)

Как найти площадь треугольника без формулы?Скачать

Как найти площадь треугольника без формулы?

100. Теорема о площади треугольникаСкачать

100. Теорема о площади треугольника

Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)Скачать

Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)

11 класс, 47 урок, Формулы площади треугольникаСкачать

11 класс, 47 урок, Формулы площади треугольника

Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Найдите площадь треугольника на рисунке ★ Два способа решения

Геометрия 8. Урок 14 - Площадь треугольников. Формулы и задачи.Скачать

Геометрия 8. Урок 14 - Площадь треугольников. Формулы и задачи.

9 класс. Геометрия. Площадь треугольника. Формулы для нахождения площади треугольника. Урок #3Скачать

9 класс. Геометрия. Площадь треугольника. Формулы для нахождения площади треугольника. Урок #3

найти площадь треугольника. Формула Герона. Известны 3 стороны.Скачать

найти площадь треугольника. Формула Герона. Известны 3 стороны.

Секретные формулы площади треугольникаСкачать

Секретные формулы площади треугольника

Лайфхак! Площади всех фигур #огэ #математика #shortsСкачать

Лайфхак! Площади всех фигур #огэ #математика #shorts

Площадь треугольника. Новые формулы.Скачать

Площадь треугольника. Новые формулы.
Поделиться или сохранить к себе: