Определить проекции центра окружности описанной вокруг треугольника

Окружность, описанная около треугольника
Содержание
  1. Определение окружности, описанной около треугольника
  2. Теорема об окружности, описанной около треугольника
  3. Решение метрических задач в начертательной геометрии с примерами
  4. Решение метрических задач методами преобразовании проекций
  5. Четыре основных задачи преобразовании проекций
  6. Способ вращения
  7. Способ плоскопараллельного перемещения
  8. Способ замены плоскостей проекций
  9. Способ плоскопараллельного перемещения
  10. Способ замены плоскостей проекций
  11. Метрические задачи
  12. Определение расстояний между геометрическими объектами
  13. Перпендикулярность плоскостей
  14. Определение углов между прямой и плоскостью и между двумя плоскостями
  15. Примеры метрических задач
  16. Теорема о проекциях прямого угла
  17. Линии наибольшего наклона плоскости
  18. Перпендикулярность прямой и плоскости
  19. Взаимная перпендикулярность плоскостей
  20. Определение метрических задач
  21. Определение длины отрезка
  22. Определение площади треугольника
  23. Проецирование прямого угла
  24. Перпендикулярность прямых и плоскостей
  25. Перпендикулярность прямой и плоскости
  26. Расстояние от точки до плоскости
  27. Перпендикулярность плоскостей
  28. Определение натуральных величин геометрических элементов
  29. Определение расстояния между геометрическими элементами (образами)
  30. Определение углов наклона геометрических элементов к плоскостям проекций H и V
  31. Окружность, описанная около треугольника. Треугольник, вписанный в окружность. Теорема синусов
  32. Серединный перпендикуляр к отрезку
  33. Окружность, описанная около треугольника
  34. Свойства описанной около треугольника окружности. Теорема синусов
  35. Доказательства теорем о свойствах описанной около треугольника окружности
  36. 📹 Видео

Видео:Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции

Определение окружности, описанной около треугольника

Определение 1. Окружностью, описанной около треугольника называется окружность, проходящей через все три вершины треугольника (Рис.1).

Определить проекции центра окружности описанной вокруг треугольника

При этом треугольник называется треугольником вписанным в окружность .

Видео:Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронтали

Теорема об окружности, описанной около треугольника

Теорема 1. Около любого треугольника можно описать окружность.

Определить проекции центра окружности описанной вокруг треугольника

Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения серединных перпендикуляров к его сторонам. Проведем отрезки OA, OB и OC. Поскольку точка O равноудалена от точек A, B и C, то OA=OB=OC. Тогда окружность с центром O и радиусом OA проходит через все три вершины треугольника ABC и, следовательно, является окружностью, описанной около треугольника ABC.Определить проекции центра окружности описанной вокруг треугольника

Из теоремы 1 следует, что центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника.

Замечание 1. Около любого треугольника можно описать только одну окружность.

Доказательство. Допустим, что около треугольника можно описать две окружности. Тогда центр каждой из этих окружностей равноудален от вершин треугольника и совпадает с точкой O пересечения серединных перпендикуляров сторон треугольника. Радиус этих окружностей равен расстоянию от точки O до вершин треугольника. Поэтому эти окружности совпадают.Определить проекции центра окружности описанной вокруг треугольника

Видео:Определение истинной величины треугольника АВС. Метод плоско-параллельного перемещенияСкачать

Определение истинной величины треугольника АВС. Метод плоско-параллельного перемещения

Решение метрических задач в начертательной геометрии с примерами

Содержание:

К метрическим задачам относятся задачи на определение натуральной величины отрезков, расстояний углов, площадей плоских фигур.

Определение натуральной величины отрезка и углов наклона к плоскостям проекций методом прямоугольною треугольника Натуральная величина отрезка равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка, а вторым — разность расстояний концов отрезка от той плоскости, на которой ведется построение. При этом угол между гипотенузой и катетом проекций является углом наклона отрезка к той плоскости, ряльной величины выполнено на горизонтальной проекции. Поэтому одним катетом прямоугольного треугольника, является горизонтальная проекцияОпределить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника

Если необходимо определить угол наклона отрезка АВ к плоскости Определить проекции центра окружности описанной вокруг треугольникато построение прямоугольного треугольника ведется на фронтальной проекции.

Видео:Построение натуральной величины треугольника методом вращенияСкачать

Построение натуральной величины треугольника методом вращения

Решение метрических задач методами преобразовании проекций

Положении геометрических образов, при которых расстоянии и углы не искажаются на плоскостях проекций

Метрические характеристики объектов на чертежах не искажаются, если геометрические образы занимают частное положение относительно плоскостей проекций.

Приведем некоторые из них.

1. Прямая проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.2).

Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника— угол наклона к плоскостиОпределить проекции центра окружности описанной вокруг треугольника

2. Расстояние от точки до прямой проецируется в натуральную величину, если прямая проецирующая (рисунок 3.3).

Определить проекции центра окружности описанной вокруг треугольника

3. Расстояние между параллельными прямыми проецируется в натуральную величину, если прямые проецирующие (рисунок 3.4).

Определить проекции центра окружности описанной вокруг треугольника

4. Расстояние между скрещивающимися прямыми проецируется в натуральную величину, если одна из прямых проецирующая (рисунок 3.5).

Определить проекции центра окружности описанной вокруг треугольника

5. Угол между плоскостями (двугранный угол) проецируется в натуральную величину, если ребро угла проецирующее (рисунок 3.6).

Определить проекции центра окружности описанной вокруг треугольника

6. Угол наклона плоскости к плоскости проекций проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.7) Определить проекции центра окружности описанной вокруг треугольника

7. Расстояние от точки до плоскости проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.8)

Определить проекции центра окружности описанной вокруг треугольника

8. Любая плоская фигура проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.9а,б)

Определить проекции центра окружности описанной вокруг треугольника

Таким образом, для решения метрических задач целесообразно данный объект привести в частное положение с тем, чтобы на одной из новых проекций получить более простое решение задачи.

Для такого перехода и служат способы преобразования проекций.

Существует несколько способов преобразовании проекций: способ вращения вокруг осей перпендикулярных плоскостям проекций, способ плоскопараллельного перемещения, способ замены плоскостей проекций и др.

Четыре основных задачи преобразовании проекций

Этими способами решаются четыре основные задачи:

  • Задача 1. Прямую общего положения преобразуем в линию уровня (одно преобразование).
  • Задача 2. Прямую общего положения преобразуем в проецирующую (два преобразования)
  • Задача 3. Плоскость общего положения преобразуем в проецирующую (одно преобразование)
  • Задача 4. Плоскость общего положения преобразуем в плоскость уровня (два преобразования)

Решение 1-ой и 2-ой задачи преобразовании проекций методом вращении, плоскопараллельного перемещении и замены плоскостей проекций

Способ вращения

Способ вращения заключается в том, что геометрические образы вращаются вокруг осей перпендикулярных плоскостям проекций до занятия ими какого-либо частного положения относительно плоскостей проекций. При этом одна проекция точки перемещается по окружности, вторая — но прямой параллельной оси проекций.

На рисунке 3.10 вокруг осиОпределить проекции центра окружности описанной вокруг треугольникавращаем отрезок ЛВ до положения параллельного плоскостиОпределить проекции центра окружности описанной вокруг треугольника(1 задача). Далее вращением вокруг осиОпределить проекции центра окружности описанной вокруг треугольникаполученный отрезок до положения перпендикулярного плоскости Определить проекции центра окружности описанной вокруг треугольникаНа Определить проекции центра окружности описанной вокруг треугольникаотрезок с проецируется в точку Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения является разновидностью способа вращения (вращение без закрепленных осей), т.е. положение объекта можно преобразовывать путем перемещения его параллельно одной плоскости проекций, одновременно изменяя его положение относительно другой плоскости проекций до занятия им какого-либо частного положения.

На рисунке 3.11 сначала АВ переводим из общего положения в положение горизонтальное. При этом Определить проекции центра окружности описанной вокруг треугольникадолжно быть равно по величина Определить проекции центра окружности описанной вокруг треугольниканаходим в пересечении вертикальных линий связи и линий Определить проекции центра окружности описанной вокруг треугольникапараллельных оси Определить проекции центра окружности описанной вокруг треугольника(1 задача). Далее отрезок Определить проекции центра окружности описанной вокруг треугольникаперемещаем до положения перпендикулярного оси Определить проекции центра окружности описанной вокруг треугольникаПри этом Определить проекции центра окружности описанной вокруг треугольникаНа фронтальной проекции отрезок с проецируется в точку Определить проекции центра окружности описанной вокруг треугольника(2 задача).

Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника

Способ замены плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что старая система плоскостей проекций заменяется на новую, с таким расчетом, чтобы относительно новой системы плоскостей, геометрический образ занял какое-то частное положение. При этом нужно помнить, что линии связи будут перпендикулярны относительно новой оси проекций и расстояния от новой оси проекций до новой проекции точки равно расстоянию от старой проекции точки до старой оси.

На рисунке 3.12 произведена первая замена плоскость Определить проекции центра окружности описанной вокруг треугольниказаменена на новую фронтальную плоскость Определить проекции центра окружности описанной вокруг треугольникапараллельную прямой АВ. При этом новая ось Определить проекции центра окружности описанной вокруг треугольникапроводится параллельно проекции Определить проекции центра окружности описанной вокруг треугольникаЛинии связи проводятся перпендикулярно оси Определить проекции центра окружности описанной вокруг треугольникаи на них от Определить проекции центра окружности описанной вокруг треугольникаоткладываются координаты z точек А и В (1 задача).

Определить проекции центра окружности описанной вокруг треугольника

Далее прямую АВ преобразуем в проецирующую. Для этого проводим новую ось Определить проекции центра окружности описанной вокруг треугольникаперпендикулярно проекцииОпределить проекции центра окружности описанной вокруг треугольника. Т.к. Определить проекции центра окружности описанной вокруг треугольникапараллельна оси Определить проекции центра окружности описанной вокруг треугольника, расстояние до проекций Определить проекции центра окружности описанной вокруг треугольникабудет одинаковое и прямая спроецируется в точку Определить проекции центра окружности описанной вокруг треугольника(2 задача)

Решение 3-ой и 4-ой задачи преобразовании проекций методом плоскопараллельного перемещения и замены плоскостей проекций

Так как метод вращения является более громоздким, рассмотрим решение 3-ей и 4-ой задачи преобразования методом плоскопараллельного перемещения и методом замены плоскостей проекций.

Способ плоскопараллельного перемещения

Определить проекции центра окружности описанной вокруг треугольника

Для того чтобы плоскость из общего положения перевести в проецирующее, нужно иметь ввиду, что при этом ее горизонталь или фронталь должна быть перпендикулярна плоскости проекций. Поэтому на рисунке 3.13 проведена горизонталь Определить проекции центра окружности описанной вокруг треугольникаДалее Определить проекции центра окружности описанной вокруг треугольникарасполагаем перпендикулярно оси Определить проекции центра окружности описанной вокруг треугольникаОткладываем на ней отрезок Определить проекции центра окружности описанной вокруг треугольникаи циркулем строим треугольник Определить проекции центра окружности описанной вокруг треугольникаравный по величине Определить проекции центра окружности описанной вокруг треугольникаНа фронтальной проекции треугольник проецируется в линию (3 задача).

Чтобы плоскость треугольника перевести в положение плоскости уровня, достаточно полученную фронтальную проекцию Определить проекции центра окружности описанной вокруг треугольникарасположить параллельно оси Определить проекции центра окружности описанной вокруг треугольникапри этом на горизонтальной проекции треугольник проецируется в натуральную величину (4-я задача)

Способ замены плоскостей проекций

При решении задачи методом замены (рисунок 3.14) новую ось Определить проекции центра окружности описанной вокруг треугольникапроводим перпендикулярно горизонтали Определить проекции центра окружности описанной вокруг треугольникатогда на новую фронтальную плоскость Определить проекции центра окружности описанной вокруг треугольникатреугольник спроецируется в линию, т.е. станет перпендикулярным (3-я задача). Чтобы плоскость перевести в положение плоскости уровня, необходимо новую ось Определить проекции центра окружности описанной вокруг треугольникапровести параллельно плоскости Определить проекции центра окружности описанной вокруг треугольникаНа новую плоскость Определить проекции центра окружности описанной вокруг треугольникатреугольник спроецируется в натуральную величину.

Определить проекции центра окружности описанной вокруг треугольника

Для того, чтобы методами преобразования решить любую метрическую задачу, необходимо определить какую из четырех основных задач преобразования необходимо решать в каждом конкретном случае.

Видео:Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигурыСкачать

Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигуры

Метрические задачи

Метрические задачи — это задачи на определение линейных или угловых размеров геометрических объектов, а также расстояний и углов между ними.

Главным вопросом метрических задач является вопрос о построении перпендикуляра к прямой или плоскости. Построение взаимно перпендикулярных прямых было рассмотрено ранее.

Из элементарной геометрии известно, что прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, принадлежащим этой плоскости. В качестве этих пересекающихся прямых наиболее целесообразно использовать горизонталь и фронталь плоскости. Это объясняется тем, что только в этом случае прямой угол будет проецироваться в натуральную величину на соответствующие плоскости проекций. На рисунке 5.1 приведен пространственный чертеж, на котором из плоскости а (из точки А) восстановлен перпендикуляр АВ. Из приведенного изображения можно выяснить методику построения проекций перпендикуляра к плоскости: горизонтальная проекция перпендикуляра к плоскости проводится перпендикулярно горизонтальной проекции горизонтали или горизонтальному следу плоскости, а фронтальная проекция перпендикуляра проводится перпендикулярно фронтальной проекции фронтали или фронтальному следу плоскости. Таким образом, необходимо выполнить следующий алгоритм проведения проекций перпендикуляра к плоскости:

Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника

Построение перпендикуляра к плоскость и восстановление перпендикуляра из плоскости называется прямой задачей, а построение плоскости, перпендикулярной к прямой — обратной задачей. Обе задачи решаются по одному и тому же вышеописанному алгоритму. При этом плоскость, перпендикулярную заданной прямой, можно задать следами или пересекающимися горизонталью и фронталью.

На рисунке 5.2 показано решение прямой (а) и обратной (б) задач. В прямой задаче из точки A треугольника AВС восстановлен перпендикуляр, в обратной задаче через точку К проведена плоскость, перпендикулярная прямой АВ. Плоскость задана пересекающимися горизонталью и фронталью.

Здесь же приведены примеры прямой и обратной задач, если плоскость задана следами. В прямой задаче (в) из точки Л построен перпендикуляр на плоскость, в обратной (г) — через точку К проведена плоскость перпендикулярно прямой АВ. Определить проекции центра окружности описанной вокруг треугольника

Определение расстояний между геометрическими объектами

Среди этих задач можно выделить следующие задачи: расстояние от точки до плоскости, расстояние от точки до прямой, расстояние между двумя параллельными прямыми, расстояние между двумя скрещивающимися прямыми, расстояние между двумя параллельными плоскостями и другие. В общем случае все задачи сводятся к определению расстояний между двумя точками.

Чтобы определить расстояние от точки до плоскости, необходимо выполнить ряд логических действий:

  1. Из точки опустить перпендикуляр на заданную плоскость;
  2. Найти точку встречи перпендикуляра с плоскостью;
  3. Определить НВ расстояния между заданной и найденной точками.

Задача на определение расстояния от точки до прямой решается по следующему плану:

  1. Через точку к провести плоскость, перпендикулярную заданной прямой;
  2. Найти точку встречи М заданной прямой с проведенной плоскостью;
  3. Соединить полученные точки (это будет перпендикуляр из точки на прямую);
  4. Определить НВ перпендикуляра.

Пространственная модель решения второй задачи представлена на рисунке 5.3. Рассмотренная задача относится также к задачам на перпендикулярность двух прямых.

Определить проекции центра окружности описанной вокруг треугольника

Другие упомянутые задачи на определение расстояний легче решаются методами преобразования эпюра, которые будут рассмотрены в последующих разделах.

Перпендикулярность плоскостей

Плоскость перпендикулярна другой плоскости, если она содержит прямую, перпендикулярную другой плоскости (рисунок 5.4а). Таким образом, для того, чтобы провести плоскость, перпендикулярную другой, необходимо сначала провести перпендикуляр к заданной плоскости, а затем через него провести искомую плоскость. На рисунке 5.46 представлена задача: через точку К провести плоскость, перпендикулярную плоскости треугольника AВС. Искомая плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна заданной плоскости.

Определить проекции центра окружности описанной вокруг треугольника

Если две плоскости являются одноименными плоскостями частного положения (например, горизонтально- или фронтально-проецирующими), то при перпендикулярности плоскостей их собирательные следы будут перпендикулярны друг другу (рисунок 5.4в,г).

Если плоскости являются плоскостями общего положения, то при их перпендикулярности одноименные следы не будут взаимно перпендикулярны. Другими словами, перпендикулярность одноименных следов плоскостей общего положения не является достаточным условием для перпендикулярности самих плоскостей.

Определение углов между прямой и плоскостью и между двумя плоскостями

Определение углов между геометрическими объектами является трудоемкой задачей, если её решать традиционными геометрическими способами. Так, например, задачу на определение угла между прямой и плоскостью (рисунок 5.5) можно решить способом, алгоритм которого содержит следующие операции:

  1. Определить точку встречи прямой АВ с плоскостью а;
  2. Из точки В построить перпендикуляр на плоскость;
  3. Найти точку встречи перпендикуляра с плоскостью;
  4. Точки К и N соединить и определить НВ угла BKN.

Определить проекции центра окружности описанной вокруг треугольника

Однако задача может быть значительно упрощена, если использовать способ решения задачи с помощью дополнительного угла. Дополнительным углом назовем угол между заданной прямой АВ и перпендикуляром BN, обозначенный через Определить проекции центра окружности описанной вокруг треугольникаИз приведенного рисунка видно, что, если из точки В прямой построить на плоскость перпендикуляр, определить НВ дополнительного угла Определить проекции центра окружности описанной вокруг треугольникато искомый угол определится по формуле:

Определить проекции центра окружности описанной вокруг треугольника

которую можно решить графически, достроив угол Определить проекции центра окружности описанной вокруг треугольникадо 90°.

То же самое можно сказать о задаче на определение двугранного угла, то есть угла между двумя плоскостями (рисунок 5.66). Первый способ (геометрический) достаточно трудоемок. Он заключается в пересечении угла вспомогательной плоскостью а, перпендикулярной ребру АВ, построении линий пересечения KN и KL и определении натуральной величины угла NKL.

Определить проекции центра окружности описанной вокруг треугольника

С помощью дополнительного угла задача решается следующим образом. В растворе двугранного угла (рисунок 5.6в) берут любую точку К и строят из неё перпендикуляры на обе плоскости двугранного угла, которые образуют дополнительный угол Определить проекции центра окружности описанной вокруг треугольникаДалее определяют НВ дополнительного угла и дополняют его (графически) до 180 градусов, исходя из формулы:

Определить проекции центра окружности описанной вокруг треугольника

Дополненный угол будет искомым.

Натуральную величину дополнительного угла Определить проекции центра окружности описанной вокруг треугольникав обеих задачах наиболее целесообразно определять методом вращения вокруг горизонтали или фронтали, который будет изложен в последующих темах.

Пример: Из любой вершины треугольника АВС восстановить перпендикуляр длиной 40 мм.

Определить проекции центра окружности описанной вокруг треугольника

Решение: Сначала необходимо в плоскости треугольника АВС провести горизонталь и фронталь для того, чтобы построить проекции восстановленного перпендикуляра. Далее из точки С проводим проекции перпендикуляра согласно рассмотренному выше алгоритму о перпендикуляре к плоскости. Для того, чтобы отложить 40 мм, необходимо определить НВ ограниченного отрезка перпендикуляра CF (точку F берем произвольно). НВ отрезка CF определяем методом прямоугольного треугольника на горизонтальной проекции CF. Полученную точку К возвращаем на проекции по теореме Фалеса. Получаем проекции перпендикуляра длиной 40 мм (рисунок. 5.7).

Пример: Найти расстояние от точки А до плоскости, заданной следами

Определить проекции центра окружности описанной вокруг треугольника

Решение: Из точки А строим перпендикуляр на заданную плоскость. Проекции перпендикуляра проводим перпендикулярно следам. Далее находим точку встречи перпендикуляра с заданной плоскостью с помощью вспомогательной фронтально-проецирующей плоскости Определить проекции центра окружности описанной вокруг треугольникаНаходим линию пересечения плоскостей Определить проекции центра окружности описанной вокруг треугольника(линия 1-2) и точку встречи Определить проекции центра окружности описанной вокруг треугольникав месте пересечения горизонтальной проекции перпендикуляра с линией 1-2. Методом прямоугольного треугольника определяем НВ расстояния АК (рисунок 5.8).

Пример: Определить расстояние от точки К до прямой AВ.

Определить проекции центра окружности описанной вокруг треугольника

Решение: Через точку К проводим плоскость, перпендикулярную заданной прямой. Плоскость задаем пересекающимися горизонталью и фронталью. Их проекции проводим согласно алгоритму о перпендикуляре к плоскости (обратная задача). Далее находим точку встречи прямой с проведенной плоскостью (точка М). Определяем натуральную величину КМ методом прямоугольного треугольника (рисунок 5.9).

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Примеры метрических задач

Задачи, в которых определяются различные геометрические величины -расстояния между объектами, длины отрезков, углы, площади и т.д. называются метрическими. Решение многих метрических задач, например задач на определение кратчайших расстояний, требует построения перпендикулярных прямых и плоскостей.

Перпендикулярность является частным случаем пересечения прямых, прямой и плоскости или двух плоскостей. Необходимо установить соотношения, по которым строятся проекции перпендикулярных прямых и плоскостей.

Теорема о проекциях прямого угла

Прямой угол проецируется на плоскость без искажения, если одна из его сторон параллельна этой плоскости (рис. 10.1).

Определить проекции центра окружности описанной вокруг треугольника

Рис. 10.1. Теорема о проекциях прямого угла

Дано :Определить проекции центра окружности описанной вокруг треугольникаBAC = 90°; AB || П’

Доказать, что C’A’Определить проекции центра окружности описанной вокруг треугольникаA’B’

Доказательство: если AB||П’, то A’B’||AB, но AA’Определить проекции центра окружности описанной вокруг треугольникаП’^AA’Определить проекции центра окружности описанной вокруг треугольникаA’B’ значит ABОпределить проекции центра окружности описанной вокруг треугольникаAA,AB Определить проекции центра окружности описанной вокруг треугольникаплоскости CAA’C’, тогда и A’B’ Определить проекции центра окружности описанной вокруг треугольникаCAA’C’. Следовательно,CA’Определить проекции центра окружности описанной вокруг треугольникаA’B’.

На основании этой теоремы две взаимно перпендикулярные прямые (пересекающиеся или скрещивающиеся) проецируются на П1 в виде взаимно перпендикулярных прямых, если одна из них горизонталь, на П2 — если одна из них фронталь (рис. 10.2,а).

Условие перпендикулярности скрещивающихся прямых (рис. 10.2,б) сводятся к условиям перпендикулярности пересекающихся прямых, поведенных через произвольную точку и соответственно параллельных скрещивающимся прямым. Таким образом, понятие перпендикулярности можно отнести как к пересекающимся, так и к скрещивающимся прямым.

Определить проекции центра окружности описанной вокруг треугольника

Рис. 10.2. Перпендикулярные прямые:
а -пересекающиеся a1 Определить проекции центра окружности описанной вокруг треугольникаh1 Определить проекции центра окружности описанной вокруг треугольникаa Определить проекции центра окружности описанной вокруг треугольникаh ;
б -скрещивающиеся b2 Определить проекции центра окружности описанной вокруг треугольникаОпределить проекции центра окружности описанной вокруг треугольника2 Определить проекции центра окружности описанной вокруг треугольникаb Определить проекции центра окружности описанной вокруг треугольникаОпределить проекции центра окружности описанной вокруг треугольника

Линии наибольшего наклона плоскости

Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, называются линиями наибольшего наклона к соответствующей плоскости проекций (рис. 10.3). Так, прямая, лежащая в плоскости и перпендикулярная горизонтали плоскости, называется линией наибольшего наклона к горизонтальной плоскости проекций, а прямая, перпендикулярная фронтали — линией наибольшего наклона к фронтальной плоскости проекций.

Угол между линией наибольшего наклона и ее проекцией на соответствующую плоскость равен углу наклона плоскости к плоскости проекций (см. рис. 9.15).
Определить проекции центра окружности описанной вокруг треугольника

Рис. 10.3. Линия наибольшего наклона плоскости а к П1:
а — плоскость общего положения; h ∈α — горизонталь плоскости а; AB Определить проекции центра окружности описанной вокруг треугольникаh — линия наибольшего наклона;
φ = Определить проекции центра окружности описанной вокруг треугольникаAB, AB 1 — угол наклона плоскости а к П1

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. На основании теоремы о проекциях прямого угла можно получить условие перпендикулярности прямой общего положения и плоскости общего положения:
Если прямая а перпендикулярна плоскости α(ABC), то ее горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция — фронтальной проекции фронтали плоскости.

Например, при построении прямой а, перпендикулярной плоскости α(ABC) (рис. 10.4,а), в плоскости строятся линии уровня — горизонталь и фронталь, затем через произвольную точку в плоскости, в данном случае точку K(h×Определить проекции центра окружности описанной вокруг треугольника), строится прямая, горизонтальная проекция которой перпендикулярна горизонтальной проекции горизонтали плоскости α(ABC), а фронтальная проекция — фронтальной проекции фронтали плоскости.

Определить проекции центра окружности описанной вокруг треугольника

Рис. 10.4. Перпендикулярность прямой и плоскости:

а -построение прямой, перпендикулярной плоскости: Определить проекции центра окружности описанной вокруг треугольника

б -построение плоскости, перпендикулярной прямой: Определить проекции центра окружности описанной вокруг треугольника

Аналогично решается задача о построении плоскости, перпендикулярной прямой общего положения (рис. 10.4,б)

Если плоскость проецирующая, проекции линий уровня совпадают со следом плоскости, перпендикулярность устанавливается по отношению к следу плоскости. Горизонтальная проекция перпендикуляра к горизонтально-проецирующей плоскости строится перпендикулярно горизонтальному следу плоскости (рис. 10.5,а). Прямая, перпендикулярная горизонтально-проецирующей плоскости, занимает положение горизонтальной линии уровня.
Аналогично, фронтальная проекция перпендикуляра к фронтально-проецирующей плоскости строится перпендикулярно фронтальному следу плоскости (рис. 10.5,б). Прямая, перпендикулярная фронтально-проецирующей плоскости, занимает положение фронтали.

Определить проекции центра окружности описанной вокруг треугольника

Рис. 10.5. Перпендикулярность прямой и проецирующей плоскости:
а -построение прямой, перпендикулярной плоскости;
б -построение плоскости, перпендикулярной прямой

Взаимная перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Таким образом, построение взаимно перпендикулярных плоскостей сводится к построению перпендикулярных прямой и плоскости. Например, чтобы через произвольную точку А провести плоскость, перпендикулярную плоскости a(Определить проекции центра окружности описанной вокруг треугольника× h) (рис. 10.6), достаточно построить прямую n,перпендикулярную плоскости α(Определить проекции центра окружности описанной вокруг треугольника×h): n1Определить проекции центра окружности описанной вокруг треугольникаh1; n2Определить проекции центра окружности описанной вокруг треугольникаОпределить проекции центра окружности описанной вокруг треугольника2. Вторая прямая m, определяющая искомую плоскость, может быть задана произвольно — как пересекающая прямую n или параллельная ей.

Определить проекции центра окружности описанной вокруг треугольника

Рис. 10.6. Перпендикулярность двух плоскостей

Дано: α(h × Определить проекции центра окружности описанной вокруг треугольника ) ; A (A1, A2).

Построить: A ∈ β Определить проекции центра окружности описанной вокруг треугольникаα .

Определить проекции центра окружности описанной вокруг треугольника

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Определение метрических задач

Традиционно задачи, связанные с измерением длин, углов, площадей и объемов относят к метрическим. В основе решения этих задач лежит определение длины отрезка и, как производной от этого, площади плоской фигуры.

Определение длины отрезка

Одним из наиболее распространенных методов (рисунок 5.1) является метод прямоугольного треугольника (так его называют в начертательной геометрии) или метод ортогональных дополнений (название, принятое в линейной алгебре).
Определить проекции центра окружности описанной вокруг треугольника

Идея метода базируется на следующем. Истинная величина отрезка AВ является гипотенузой прямоугольного треугольника, один из катетов которого, является проекцией отрезка AВ на плоскость проекции Определить проекции центра окружности описанной вокруг треугольникаа второй катет -разница координат Определить проекции центра окружности описанной вокруг треугольникаконцов отрезка для оси, отсутствующей в рассматриваемой плоскости проекции (ортогональное дополнение). Угол между проекцией и гипотенузой этого треугольника (а) определяет наклон прямой к соответствующей плоскости проекции.

На комплексном чертеже возможно решение как на плоскости Определить проекции центра окружности описанной вокруг треугольникатак и на плоскости Определить проекции центра окружности описанной вокруг треугольникаПри правильных построениях Определить проекции центра окружности описанной вокруг треугольника. Углы а и Определить проекции центра окружности описанной вокруг треугольника-углы наклона отрезка прямой АВ к плоскости Определить проекции центра окружности описанной вокруг треугольникасоответственно.

Определение площади треугольника

Определение площади треугольника и величины плоского угла можно свести к известной задаче построения треугольника по трем сторонам.

Для этого достаточно, используя рассмотренный выше способ прямоугольного треугольника, найти по порядку истинные величины сторон Определить проекции центра окружности описанной вокруг треугольника(в соответствии с рисунком 5.2), а затем на свободном месте построить треугольник по трем сторонам.

Определить проекции центра окружности описанной вокруг треугольника
Величина плоского угла между двумя любыми сторонами этой фигуры может быть измерена на истинной величине треугольника.

Проецирование прямого угла

Решение многих задач Начертательной геометрии связано с необходимостью построения на чертеже взаимно перпендикулярных прямых и плоскостей. Базой для этого служит умение строить прямые углы на комплексном чертеже.

Определить проекции центра окружности описанной вокруг треугольника
Известная в теории чертежа теорема (приведем ее без доказательства) утверждает, что прямой угол (в соответствии с рисунком 5.3) проецируется на

соответствующую плоскость проекций вез искажения, если одна из его сторон параллельна этой плоскости проекций, а вторая — ей не перпендикулярна.

Перпендикулярность прямых и плоскостей

Выше уже отмечалось, что в трехмерном Евклидовом пространстве отсутствует полная параллельность, то же самое можно сказать и о перпендикулярности. Понятие перпендикулярности так же, как и параллельности, вводится через определение.

Перпендикулярность прямой и плоскости

Считают, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся (любым) прямым этой плоскости.

При решении задачи возможны два варианта: проведение перпендикулярной прямой к плоскости из внешней точки и из точки, лежащей в плоскости.
Рассмотрим возможность проведения перпендикуляра из точки К, лежащей в плоскости общего положения Р, заданной следами (рисунок 5.4).

Определить проекции центра окружности описанной вокруг треугольника
Рисунок 5.4 — Перпендикулярность прямой и плоскости

В плоскости Р (через точку К) проводятся горизонталь h и фронталь f. Прямые, перпендикулярные соответствующим проекциям линий уровня Определить проекции центра окружности описанной вокруг треугольникав соответствии с теоремой о проецировании прямого угла и данным выше определением, могут быть приняты за проекции прямой Определить проекции центра окружности описанной вокруг треугольника.

В том случае, когда точка К не лежит в плоскости Р, решение задачи аналогично (рисунок 5.5).

Поскольку положение точки пересечения искомого перпендикуляра не определено, решение соответствует следующей схеме:

а) в плоскости проводятся горизонталь h (через точку В) и фронталь f (через точку A), в случае задания плоскости следами за фронталь и горизонталь принимаются соответствующие следы плоскости Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника

Рисунок 5.5 — Перпендикуляр к плоскости

б) из внешней точки К к соответствующим проекциям линий уровня (следам) проводятся перпендикулярные прямыеОпределить проекции центра окружности описанной вокруг треугольника— Линия t принимается за перпендикуляр, опущенный из точки К к плоскости Р;

в) определяется точка S пересечения этого перпендикуляра t и плоскости.

Расстояние от точки до плоскости

Определить проекции центра окружности описанной вокруг треугольника
Рисунок 5.6 — Расстояние от точки до плоскости

Задачу на определение расстояние от точки до плоскости (рисунок 5.6) можно свести к решению уже известных задач на построение перпендикуляра к плоскости (рисунок 5.5) и определения натуральной величины отрезка прямой (рисунок 5.1)

Перпендикулярность плоскостей

Считают, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную другой плоскости.

Задача может ставиться, как проведение плоскости, перпендикулярной заданной, проходящей через точку или прямую.

При проведении искомой плоскости через точку, как и в предыдущем случае, возможны два варианта проведения плоскости перпендикулярной заданной: через точку, лежащую в плоскости и через точку вне ее (рисунок 5.7).

Точно такой же вариант возникает и при проведении перпендикулярной плоскости через прямую (лежащую в исходной плоскости или не лежащую).

Рассмотрим вариант построения плоскости, проходящей через точку. Пусть точка А лежит в плоскости Р. Линии Определить проекции центра окружности описанной вокруг треугольникаперпендикулярные соответствующим проекциям линий уровня (следам), определят перпендикуляр t к плоскости Р.

Определить проекции центра окружности описанной вокруг треугольника
Рисунок 5.7 — Перпендикулярность плоскостей
Проведение через точку А произвольной прямой s позволяет определить плоскость Q, которая будет перпендикулярна плоскости Р.

Если точка А лежит вне плоскости Р, то решение аналогично. Проведение через точку А перпендикуляра t и произвольной прямой s определит плоскость Q, которая также, по определению, будет перпендикулярна плоскости Р.

Решение задачи на проведение плоскости через прямую аналогично решению задачи по проведению плоскости через точку. Достаточно вместо произвольной прямой s использовать заданную прямую АВ. И тогда, в соответствии с рисунком 5.8, задача сведется к проведению перпендикуляра t к плоскости Р (из точки, лежащей в плоскости или лежащей вне ее).
Определить проекции центра окружности описанной вокруг треугольника

Рисунок 5.8 — Перпендикулярность плоскостей

Определение натуральных величин геометрических элементов

1. Определить натуральную величину отрезка общего положения:

  • способом прямоугольного треугольника;
  • способом замены плоскостей проекций преобразовать в прямую уровня;
  • способом вращения вокруг проецирующей оси преобразовать в прямую уровня.

2. Определить натуральную величину плоскости общего положения (замкнутого отсека):

  • способом замены плоскостей проекций преобразовать в плоскость уровня;
  • способом вращения вокруг линии уровня преобразовать в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать в плоскость уровня.

Определение расстояния между геометрическими элементами (образами)

1. Определить расстояние от точки до прямой общего положения:

  • способом замены плоскостей проекций преобразовать плоскость, заданную прямой и точкой, в плоскость уровня (задачи 3 и 4 преобразования; прямую и точку рассматривать как плоскость);
  • способом замены плоскостей проекций преобразовать прямую общего положения в проецирующую прямую (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить через заданную точку плоскость, перпендикулярную к прямой, и определить точку пересечения последней с плоскостью.

2. Определить расстояние между параллельными прямыми:

  • способом замены плоскостей проекций преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня (задачи 3 и 4 преобразования);
  • способом замены плоскостей проекций преобразовать две параллельные общего положения в проецирующие прямые (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня, ограничив ее замкнутым отсеком;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить плоскость через любую точку, принадлежащую одной из прямых, перпендикулярную ко второй прямой, и определить точку пересечения этой плоскости со второй прямой.

3. Определить расстояние между скрещивающимися прямыми, преобразовав одну из прямых в проецирующую (задачи 1 и 2 преобразования).

4. Определить расстояние от точки до плоскости:

  • по теме «Перпендикулярность» – провести перпендикуляр к плоскости, построить точку пересечения этого перпендикуляра с заданной плоскостью и найти любым способом натуральную величину построенного отрезка (см. пункт 1);
  • способом замены плоскостей проекций преобразовать плоскость общего положения в плоскость проецирующую.

5. Определить расстояние от точки до поверхности вращения:

  • способом замены плоскостей проекций преобразовать плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня (задача 4 преобразования);
  • способом вращения вокруг проецирующей оси повернуть плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня.

Определение углов наклона геометрических элементов к плоскостям проекций H и V

1. Определить углы наклона прямой общего положения к плоскостям проекций H и V:

  • способом прямоугольного треугольника построить на двух проекциях натуральные величины отрезка и определить углы наклона прямой;
  • способом замены плоскостей проекций преобразовать прямую общего положения в горизонтальную, а затем во фронтальную прямую (задача 1 преобразования);
  • способом вращения вокруг соответствующей проецирующей оси преобразовать прямую общего положения в горизонтальную и во фронтальную прямые.

2. Определить угол наклона прямой к заданной плоскости общего положения:

  • из любой точки прямой опустить перпендикуляр к плоскости;
  • способом вращения вокруг линии уровня преобразовать построенную плоскость, заданную прямой и перпендикуляром, в плоскость уровня;
  • искомый угол будет дополнять построенный угол до 90°.

3. Определить величину двухгранного угла, если на чертеже есть линии пересечения плоскостей, образующих двухгранный угол (ребро):

  • способом замены плоскостей проекций преобразовать ребро двухгранного угла в проецирующую прямую (задачи 1 и 2 преобразования).

4. Определить угол между двумя плоскостями общего положения, если на чертеже нет линии пересечения заданных плоскостей (ребра):

  • задача решается косвенным путем, для чего из любой точки пространства следует опустить перпендикуляры к заданным плоскостям, которые, в свою очередь, задают вспомогательную плоскость, перпендикулярную к этим плоскостям;
  • эту вспомогательную плоскость способом вращения вокруг линии уровня следует преобразовать в плоскость уровня, определив угол между перпендикулярами (преобразование вспомогательной плоскости в плоскость уровня возможно и другими способами – ее плоскопараллельным перемещением или заменой плоскостей проекций);
  • искомый угол будет дополнять построенный угол до 180° (углом между плоскостями считают угол острый).

Структуризация материала тринадцатой лекции в рассмотренном объеме схематически представлена на рис. 13.1 (лист 1). На последующих листах 2–7 компактно приведены иллюстрации к этой схеме для визуального повторения изученного материала при его повторении (рис. 13.2–13.7).

Метрические задачи:

Определить проекции центра окружности описанной вокруг треугольника

Определение натуральной величины геометрических элементов:

1. Определение длины отрезка

Способ прямоугольного треугольника

Определить проекции центра окружности описанной вокруг треугольника

Способ замены плоскостей проекций (задача 1)

Определить проекции центра окружности описанной вокруг треугольника

Способ вращения вокруг проецирующей оси

Определить проекции центра окружности описанной вокруг треугольника

2. Определение площади замкнутого отсека

Способ замены плоскостей проекций (задачи 3 и 4)

Определить проекции центра окружности описанной вокруг треугольника

Способ вращения вокруг прямой уровня (горизонтали)

Определить проекции центра окружности описанной вокруг треугольника

Способ вращения вокруг проецирующей оси i(i Определить проекции центра окружности описанной вокруг треугольникаV)

Определить проекции центра окружности описанной вокруг треугольника

Способ плоско-параллельного перемещения (переноса)

Определить проекции центра окружности описанной вокруг треугольника

Определение расстояний:

1. Расстояние между точками — определяется величиной отрезка, соединяющего эти точки

2. Расстояние от точки до прямой — определяется величиной перпендикуляра, опущенного из точки к прямой

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис. 13.2, г)

в. Способ вращения вокруг прямой уровня: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, д)

г. Способ плоскопараллельного переноса: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, ж)

Определить проекции центра окружности описанной вокруг треугольника

3. Расстояние между параллельными прямыми — определяется величиной перпендикуляра, проведённого из произвольной точки одной прямой к другой прямой

а. Способ замены плоскостей проекции (рассматриваем две прямые) — задачи 1 и 2 (преобразовать прямые общего положения AB и CD в проецирующие)

б. Способ замены плоскостей проекции (рассматриваем плоскость, которую определяют параллельные прямые) — задачи 3 и 4 (определить натуральную величину плоскости ? (AB//СВ))

Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника

4. Расстояние между скрещивающимися прямыми — определяется величиной перпендикуляра, проведённого от одной из прямых, преобразованной в точку, к другой прямой (задачи 1 и 2 замены плоскостей проекции).

Способ замены плоскостей проекций — задачи 1 и 2

Определить проекции центра окружности описанной вокруг треугольника

5. Расстояние от точки до плоскости — определяется величиной перпендикуляра, проведённого из точки на плоскость до точки его пересечения с этой плоскостью.

а. Прямой путь (перпендикулярность)

Определить проекции центра окружности описанной вокруг треугольника

б. Способ замены плоскостей проекций (плоскость преобразовать в проецирующую — задача 3)

Определить проекции центра окружности описанной вокруг треугольника

6. Расстояние между прямой и параллельной ей плоскостью — определяется величиной перпендикуляра, проведённого из произвольной точки на прямой к плоскости.

7. Расстояние между параллельными плоскостями — определяется величиной отрезка перпендикуляра, опущенного из точки одной плоскости на другую плоскость (до точки пересечения с другой плоскостью).

8. Расстояние от точки до поверхности

a. Cпособ вращения вокруг проецирующей оси

Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника

б. Способ замены плоскостей проекции

Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника

Определение величин углов:

1. Угол φ между скрещивающимися прямыми — определяется плоским углом, образованным двумя пересекающимися прямыми, проведёнными из произвольной точки пространства параллельно скрещивающимся прямым (рис. 13.6, а)

Способ вращения вокруг линии уровня

Дано:
а и b — скрещивающиеся прямые
Требуется:

φ — ?

Решение:
1.
Определить проекции центра окружности описанной вокруг треугольника
2.φ — вращением вокруг фронтали, проведённой в построенной плоскости α(dс)

Определить проекции центра окружности описанной вокруг треугольника

2. Угол φ между прямой и плоскостью — определяется углом между прямой и её проекцией на эту плоскость.

Дано:
α(h ∩ f);
AB — прямая общего положения
Требуется:
φ — ?

Определить проекции центра окружности описанной вокруг треугольника

Решение:
1. l Определить проекции центра окружности описанной вокруг треугольника α(h ∩ f);
lОпределить проекции центра окружности описанной вокруг треугольника» Определить проекции центра окружности описанной вокруг треугольникаf»;
lОпределить проекции центра окружности описанной вокруг треугольника Определить проекции центра окружности описанной вокруг треугольникаh’;
2. ∠φ — вращением вокруг фронтали, проведённой в построенной плоскости β(AB∩l)

3. Угол φ между плоскостями α и β — определяется линейным углом, образованным двумя прямыми, по которым некоторая плоскость γ, перпендикулярная плоскостям (или их ребру), пересекает эти плоскости (углом между плоскостями считают острый угол).

а. Если на чертеже нет ребра (линии пересечения заданных плоскостей) — угол φ определяется способом вращения вокруг линии уровня (рис. а)

Определить проекции центра окружности описанной вокруг треугольника

Дано:
(m // h); (а
b).
Требуется:
φ — ?
Решение:
1. провести в заданной плоскости фронтали и горизонтали;

2. из произвольной точки пространства D (D’, D») провести перпендикуляры l1 и l2 к заданными плоскостям, которые определяют плоскость γ(l1 l2);
3.
φ — вращением вокруг горизонтали h3, проведённой в построенной плоскости γ(l1 l2).

Определить проекции центра окружности описанной вокруг треугольника

б. Если на чертеже есть ребро (линия пересечения заданных плоскостей) — угол φ определяется способом замены плоскостей проекций (задачи 1 и 2, рис. б)

Определить проекции центра окружности описанной вокруг треугольника

ребро АВ двугранного угла преобразовать двумя заменами в проецирующую прямую.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Тени в ортогональных проекциях
  • Кривые поверхности
  • Пересечения криволинейных поверхностей
  • Пересечения поверхностей с прямой и плоскостью
  • Пересечение поверхности плоскостью и прямой
  • Развертки поверхностей
  • Способы преобразования проекций
  • Взаимное положение прямой и плоскости

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:СПОСОБ ПЕРЕМЕНЫ ПЛОСКОСТЕЙСкачать

СПОСОБ ПЕРЕМЕНЫ ПЛОСКОСТЕЙ

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Определить проекции центра окружности описанной вокруг треугольникаСерединный перпендикуляр к отрезку
Определить проекции центра окружности описанной вокруг треугольникаОкружность описанная около треугольника
Определить проекции центра окружности описанной вокруг треугольникаСвойства описанной около треугольника окружности. Теорема синусов
Определить проекции центра окружности описанной вокруг треугольникаДоказательства теорем о свойствах описанной около треугольника окружности

Определить проекции центра окружности описанной вокруг треугольника

Видео:Вращение вокруг проецирующей прямой и прямой уровняСкачать

Вращение вокруг проецирующей прямой и прямой уровня

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Определить проекции центра окружности описанной вокруг треугольника

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Определить проекции центра окружности описанной вокруг треугольника

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Определить проекции центра окружности описанной вокруг треугольника

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Определить проекции центра окружности описанной вокруг треугольника

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника

Полученное противоречие и завершает доказательство теоремы 2

Видео:Построение проекции пирамиды. Метод прямого треугольника.Скачать

Построение проекции пирамиды. Метод прямого треугольника.

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Определить проекции центра окружности описанной вокруг треугольника

Видео:Способ вращения. Определение истинной величины отрезка.Скачать

Способ вращения. Определение истинной величины отрезка.

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Определить проекции центра окружности описанной вокруг треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Определить проекции центра окружности описанной вокруг треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Определить проекции центра окружности описанной вокруг треугольникаВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаОпределить проекции центра окружности описанной вокруг треугольникаОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиОпределить проекции центра окружности описанной вокруг треугольникаЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиОпределить проекции центра окружности описанной вокруг треугольникаЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовОпределить проекции центра окружности описанной вокруг треугольника
Площадь треугольникаОпределить проекции центра окружности описанной вокруг треугольника
Радиус описанной окружностиОпределить проекции центра окружности описанной вокруг треугольника
Серединные перпендикуляры к сторонам треугольника
Определить проекции центра окружности описанной вокруг треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаОпределить проекции центра окружности описанной вокруг треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиОпределить проекции центра окружности описанной вокруг треугольника

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиОпределить проекции центра окружности описанной вокруг треугольника

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиОпределить проекции центра окружности описанной вокруг треугольника

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовОпределить проекции центра окружности описанной вокруг треугольника

Для любого треугольника справедливы равенства (теорема синусов):

Определить проекции центра окружности описанной вокруг треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаОпределить проекции центра окружности описанной вокруг треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиОпределить проекции центра окружности описанной вокруг треугольника

Для любого треугольника справедливо равенство:

Определить проекции центра окружности описанной вокруг треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Определить проекции центра окружности описанной вокруг треугольника

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Определить проекции центра окружности описанной вокруг треугольника

Определить проекции центра окружности описанной вокруг треугольника.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Определить проекции центра окружности описанной вокруг треугольника

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

📹 Видео

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

координаты центра тяжести треугольникаСкачать

координаты центра тяжести треугольника

Построение недостающих проекции сквозного отверстия в сфереСкачать

Построение недостающих проекции сквозного отверстия в сфере

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекцииСкачать

Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекции

Радиус описанной окружностиСкачать

Радиус описанной окружности

Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

Центр описанной окружностиСкачать

Центр описанной окружности
Поделиться или сохранить к себе: