Определение равнобедренного треугольника чертеж

Равнобедренный треугольник

Равнобедренный треугольник – треугольник, у которого две стороны равны между собой.

Равные стороны называются боковыми , третья сторона называется основанием .

Определение равнобедренного треугольника чертеж

Свойства равнобедренного треугольника

1. Углы при основании равны

Определение равнобедренного треугольника чертеж

2. Биссектриса, медиана и высота, проведенные к основанию совпадают между собой

Определение равнобедренного треугольника чертеж

3. Углы при основании равнобедренного треугольника вычисляются по следующей формуле:

Определение равнобедренного треугольника чертеж,

где Определение равнобедренного треугольника чертеж– угол напротив основания.

Определение равнобедренного треугольника чертеж

4. Биссектрисы, медианы и высоты, проведённые из углов при основании равны между собой

Определение равнобедренного треугольника чертеж

5. Центры вписанной и описанной окружностей лежат на медиане=высоте=биссектрисе, проведенной к основанию

Определение равнобедренного треугольника чертеж

Признаки равнобедренного треугольника

1. Если в треугольнике два угла равны, то он равнобедренный.

2. Если в треугольнике медиана является и высотой (биссектрисой), то такой треугольник равнобедренный.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

Равнобедренный треугольник: свойства, признаки и формулы

Определение равнобедренного треугольника чертеж

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Определение равнобедренного треугольника

Какой треугольник называется равнобедренным?

Равнобедренным называется треугольник, у которого две стороны равны.

Давайте посмотрим на такой треугольник:

Определение равнобедренного треугольника чертеж

На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.

А вот как называются стороны равнобедренного треугольника:

AB и BC — боковые стороны,

AC — основание треугольника.

Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.

Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.

Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.

Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.

Определение равнобедренного треугольника чертеж

Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».

В данном треугольнике медианой является отрезок BH.

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.

Высотой в представленном равнобедренном треугольнике является отрезок BH.

Определение равнобедренного треугольника чертеж

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Признаки равнобедренного треугольника

Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.

  1. Если у треугольника два угла равны, то этот треугольник — равнобедренный.
  2. Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
  3. Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
  4. Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!

Видео:Периметр равнобедренного треугольникаСкачать

Периметр равнобедренного треугольника

Свойства равнобедренного треугольника

Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Определение равнобедренного треугольника чертеж

Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, AH = HC и BH — медиана.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.

Определение равнобедренного треугольника чертеж

Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.

Определение равнобедренного треугольника чертеж

Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, AH = HC и BH — медиана.

Видео:Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора | Геометрия | АлгебраСкачать

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора  |  Геометрия | Алгебра

Примеры решения задач

Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.

Определение равнобедренного треугольника чертеж

Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.

Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.

Значит, ∠A = ∠C = 80°.

Не должно вас удивить и то, что сумма углов треугольника равна 180°.

∠B = 180° − 80° − 80° = 20°.

Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.

Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.

А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.

Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.

Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.

Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Свойства и признаки равнобедренного треугольника

Равнобедренным треугольником называют треугольник, у которого две стороны равны.

Равные стороны называют боковыми сторонами равнобедренного треугольника, третью сторону называют основанием равнобедренного треугольника.

Если треугольник является равнобедренным треугольником, то углы при его основании равны.

Если у треугольника два угла равны, то этот треугольник является равнобедренным треугольником.

Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным

Если в треугольнике высота совпадает с биссектрисой, то этот треугольник является равнобедренным

Если в треугольнике биссектриса совпадает с медианой, то этот треугольник является равнобедренным

Тип утвержденияФигураРисунокФормулировка
ОпределениеРавнобедренный треугольникОпределение равнобедренного треугольника чертеж
СвойствоУглы при основании равнобедренного треугольникаОпределение равнобедренного треугольника чертеж
ПризнакДва равных угла треугольника
СвойствоМедиана, биссектриса и высота, проведённые к основанию равнобедренного треугольникаОпределение равнобедренного треугольника чертежВ равнобедренном треугольнике медиана, биссектриса и высота, проведённые из вершины, противолежащей основанию, совпадают.
ПризнакВысота треугольника, совпадающая с медианойОпределение равнобедренного треугольника чертеж
ПризнакВысота треугольника, совпадающая с биссектрисойОпределение равнобедренного треугольника чертеж
ПризнакБиссектриса треугольника, совпадающая с медианойОпределение равнобедренного треугольника чертеж

Равнобедренным треугольником называют треугольник, у которого две стороны равны.

Равные стороны называют боковыми сторонами равнобедренного треугольника, третью сторону называют основанием равнобедренного треугольника.

Если треугольник является равнобедренным треугольником, то углы при его основании равны.

Если у треугольника два угла равны, то этот треугольник является равнобедренным треугольником.

Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным

Если в треугольнике высота совпадает с биссектрисой, то этот треугольник является равнобедренным

Если в треугольнике биссектриса совпадает с медианой, то этот треугольник является равнобедренным

Определение: равнобедренный треугольник
Определение равнобедренного треугольника чертеж
Свойство: углы при основании равнобедренного треугольника
Определение равнобедренного треугольника чертеж
Признак: два равных угла треугольника
Определение равнобедренного треугольника чертеж
Свойство: медиана, биссектриса и высота, проведённые к основанию равнобедренного треугольника
Определение равнобедренного треугольника чертежВ равнобедренном треугольнике медиана, биссектриса и высота, проведённые из вершины, противолежащей основанию, совпадают.
Признак: высота треугольника, совпадающая с медианой
Определение равнобедренного треугольника чертеж
Признак: высота треугольника, совпадающая с биссектрисой
Определение равнобедренного треугольника чертеж
Признак: биссектриса треугольника, совпадающая с медианой
Определение равнобедренного треугольника чертеж
Определение равнобедренного треугольника
Определение равнобедренного треугольника чертеж

Равнобедренным треугольником называют треугольник, у которого две стороны равны.

Равные стороны называют боковыми сторонами равнобедренного треугольника, третью сторону называют основанием равнобедренного треугольника.

Свойство углов при основании равнобедренного треугольникаОпределение равнобедренного треугольника чертеж

Если треугольник является равнобедренным треугольником, то углы при его основании равны.

Признак равнобедренного треуголька: два равных угла треугольникаОпределение равнобедренного треугольника чертеж

Если у треугольника два угла равны, то этот треугольник является равнобедренным треугольником.

Свойство медианы, биссектрисы и высоты, проведённых к основанию равнобедренного треугольникаОпределение равнобедренного треугольника чертеж

В равнобедренном треугольнике медиана, биссектриса и высота, проведённые из вершины, противолежащей основанию, совпадают.

Признак равнобедренного треугольника: высота треугольника, совпадающая с медианойОпределение равнобедренного треугольника чертеж

Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным

Признак равнобедренного треугольника: высота треугольника, совпадающая с биссектрисойОпределение равнобедренного треугольника чертеж

Если в треугольнике высота совпадает с биссектрисой, то этот треугольник является равнобедренным

Признак равнобедренного треугольника: биссектриса треугольника, совпадающая с медианойОпределение равнобедренного треугольника чертеж

Если в треугольнике биссектриса совпадает с медианой, то этот треугольник является равнобедренным

💡 Видео

Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Признаки равнобедренного треугольника - геометрия 7 классСкачать

Признаки равнобедренного треугольника - геометрия 7 класс

Урок 11. Признаки равнобедренного треугольника (7 класс)Скачать

Урок 11.  Признаки равнобедренного треугольника (7 класс)

Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.Скачать

Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.

✓ Свойства и признаки равнобедренного треугольника | Ботай со мной #008 | Борис ТрушинСкачать

✓ Свойства и признаки равнобедренного треугольника | Ботай со мной #008 | Борис Трушин

Как распознать равнобедренный треугольник? #shortsСкачать

Как распознать равнобедренный треугольник? #shorts

равнобедренный треугольник #SHORTSСкачать

равнобедренный треугольник #SHORTS

ПРИЗНАКИ РАВНОБЕДРЕННОГО ТРЕУГОЛЬНИКА. §10 геометрия 7 классСкачать

ПРИЗНАКИ РАВНОБЕДРЕННОГО ТРЕУГОЛЬНИКА. §10 геометрия 7 класс

№254. Найдите углы равнобедренного прямоугольного треугольника.Скачать

№254. Найдите углы равнобедренного прямоугольного треугольника.

Равнобедренный треугольникСкачать

Равнобедренный треугольник

Определение угла равнобедренного треугольникаСкачать

Определение угла равнобедренного треугольника

ГЕОМЕТРИЯ 7 класс : Свойства и признаки равнобедренного треугольникаСкачать

ГЕОМЕТРИЯ 7 класс : Свойства и признаки равнобедренного треугольника
Поделиться или сохранить к себе: