Окружность — это геометрическая фигура, образованная замкнутой кривой линией, все точки которой одинаково удалены от одной и той же точки.
Точка, от которой одинаково удалены все точки окружности, называется центром окружности. Центр окружности обычно обозначают большой латинской буквой O:
Окружность делит плоскость на две области — внутреннюю и внешнюю. Геометрическая фигура, ограниченная окружностью, — это круг:
Видео:Окружность, диаметр, хорда геометрия 7 классСкачать
Построение окружности циркулем
Для построения окружности используют специальный прибор — циркуль:
Установим циркулю произвольный раствор (расстояние между ножками циркуля) и, поставив его ножку с остриём в какую-нибудь точку плоскости (например, на листе бумаги), станем вращать циркуль вокруг этой точки. Другая его ножка, снабжённая карандашом или грифелем, прикасающимся к плоскости, начертит на плоскости замкнутую линию — окружность:
Видео:Радиус Хорда ДиаметрСкачать
Радиус, хорда и диаметр
Радиус — это отрезок, соединяющий любую точку окружности с центром. Радиусом также называется расстояние от точки окружности до её центра:
Все радиусы окружности имеют одну и ту же длину, то есть они равны между собой. Радиус обозначается буквой R или r.
Хорда — это отрезок, соединяющий две точки окружности. Хорда, проходящая через центр, называется диаметром окружности.
Диаметр обозначается буквой D. Диаметр окружности в два раза больше её радиуса:
Дуга — это часть окружности, ограниченная двумя точками. Любые две точки делят окружность на две дуги:
Чтобы различать дуги, на которые две точки разделяют окружность, на каждую из дуг ставят дополнительную точку:
Для обозначения дуг используется символ :
- AFB — дуга с концами в точках A и B, содержащая точку F;
- AJB — дуга с концами в точках A и B, содержащая точку J.
О хорде, которая соединяет концы дуги, говорят, что она стягивает дугу.
Хорда AB стягивает дуги AFB и AJB.
Видео:Радиус и диаметрСкачать
Окружность
Окружность — это геометрическая фигура, которая состоит из
всех точек плоскости, расположенных на заданном расстоянии
от данной точки.
Для решения задач, связанных с окружность, нужно знать её свойства.
Свойства окружности, как и любой другой фигуры зависят от
формы, размеров и так далее. В этой статье мы расскажем вам о
свойства окружности и об основных терминах,
таких как: хорда, радиус, дуга и так далее.
На рисунке 1 изображена окружность, где O — центр окружности,
PK — хорда, AO — радиус, АС — диаметр, DEF — дуга.
Центром окружности называется точка откуда берет начало радиус.
Расположена эта точка в центре окружности. Если внутри окружности
точка расположена на равном расстоянии от всех точек плоскости,
значит это центр окружности. O — центр окружности.
Отрезком соединяющим центр окружности и любую из точек плоскости
называют радиусом. Если отрезок внутри окружности соединяет центр
окружности с любой из точек плоскости, значит этот отрезок — радиус.
CO — радиус.
Отрезок, который соединяет две точки окружности, называется хордой.
Если отрезок внутри окружности соединяет любые две точки окружности,
значит этот отрезок — хорда. PK — хорда.
Отрезок, соединяющий две любые точки окружности и проходящий через
центр окружности, называется диаметром. Если отрезок внутри окружности
соединяет любые две точки окружности и проходит через центр окружности,
значит этот отрезок диаметр. Диаметр в два раза больше радиуса. AC — диаметр.
У диаметра есть середина, которая является центром окружности. Две любые
точки окружности делят окружность на две части. Каждая из частей называется
дугой окружности.
Если две любые точки окружности, делят её на две части,
значит эти части — дуги. DEF — дуга.
Для того, чтобы изобразить окружность на чертеже используют циркуль.
Чтобы провести окружность на местности, можно воспользоваться веревкой.
Кругом называется часть плоскости, которая ограничена окружностью.
Если часть плоскости ограничивает окружность, значит эта часть плоскости — круг.
Сумма углов окружности равна 360°.
Видео:Определение центра дуги окружности, построение окружности по 3 точкамСкачать
Геометрия. Урок 5. Окружность
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Определение окружности
- Отрезки в окружности
Видео:Длина окружности. Математика 6 класс.Скачать
Определение окружности
Окружность – геометрическое место точек, равноудаленных от данной точки.
Эта точка называется центром окружности .
Видео:Окружность круг хорда диаметр радиус дуга сектор сегментСкачать
Отрезки в окружности
Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.
Хорда a – отрезок, соединяющий две точки на окружности.
Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).
O A – радиус, D E – хорда, B C – диаметр.
Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.
Касательная к окружности – прямая, имеющая с окружностью одну общую точку.
Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.
Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).
Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.
Видео:Окружность и круг. Центр, радиус, диаметр, хорда, дуга, сектор и длина окружности, площадь круга.Скачать
Дуга в окружности
Часть окружности, заключенная между двумя точками, называется дугой окружности .
Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .
Теорема 4:
Равные хорды стягивают равные дуги.
Если A B = C D , то ∪ A B = ∪ C D
Видео:Геометрия. 7 класс. Определения. Часть 3. Окружность.Скачать
Углы в окружности
В окружности существует два типа углов: центральные и вписанные.
Центральный угол – угол, вершина которого лежит в центре окружности.
∠ A O B – центральный.
Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α
Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.
Градусная мара всей окружности равна 360 ° .
Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.
∠ A C B – вписанный.
Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α
Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .
∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2
Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .
∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °
Видео:Окружность. 7 класс.Скачать
Длина окружности, длина дуги
Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .
Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .
Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.
Длина окружности находится по формуле:
Длина дуги окружности , на которую опирается центральный угол α равна:
l α = π R 180 ∘ ⋅ α
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Площадь круга и его частей
Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.
Круг – часть пространства, которая находится внутри окружности.
Иными словами, окружность – это граница, а круг – это то, что внутри.
Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.
Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.
Площадь круга находится по формуле: S = π R 2
Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Примеры сектора в реальной жизни: кусок пиццы, веер.
Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α
Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.
Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.
Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.
S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α
Видео:Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать
Теорема синусов
Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с окружностями.
🔥 Видео
Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)Скачать
Окружность и круг, 6 классСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте СегментаСкачать
РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?Скачать
Окружность. Круг. 5 класс.Скачать
8 класс. ОГЭ. Найти диаметр окружностиСкачать
+Как найти длину окружностиСкачать