Фигура | Рисунок | Формулировка | ||||||||||
Прямоугольный треугольник | ||||||||||||
Равнобедренный прямоугольный треугольник | ||||||||||||
Прямоугольный треугольник с углом в 30° |
Прямоугольный треугольник | ||
Равнобедренный прямоугольный треугольник | ||
Определение равнобедренного прямоугольного треугольника: Равнобедренным прямоугольным треугольником называют такой прямоугольный треугольник, у которого равны катеты. Свойство углов прямоугольного треугольника: Острые углы равнобедренного прямоугольного треугольника равны 45° . | ||
Прямоугольный треугольник с углом в 30° | ||
Свойство прямоугольного треугольника с углом в 30° : Катет прямоугольного треугольника, лежащий против угла в 30° , равен половине гипотенузы. Признак прямоугольного треугольника с углом в 30° : Если в прямоугольном треугольнике один из катетов равен половине гипотенузы, то этот катет лежит против угла в 30° . | ||
Медиана, проведённая к гипотенузе прямоугольного треугольника | ||
Свойство медианы, проведенной к гипотенузе прямоугольного треугольника: Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы. Признак прямоугольного треугольника: Если в треугольнике медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным. | ||
Центр описанной окружности | ||
Свойство окружности, описанной около прямоугольного треугольника: Середина гипотенузы прямоугольного треугольника является центром описанной около него окружности. Признак прямоугольного треугольника: Если в треугольнике центр описанной окружности лежит на одной из сторон, то этот треугольник является прямоугольным треугольником, а центр описанной окружности совпадает с серединой гипотенузы. | ||
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов Обратная теорема Пифагора: Если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным Содержание
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать Окружность, описанная около треугольникаВидео:Всё про углы в окружности. Геометрия | МатематикаСкачать Определение окружности, описанной около треугольникаОпределение 1. Окружностью, описанной около треугольника называется окружность, проходящей через все три вершины треугольника (Рис.1). При этом треугольник называется треугольником вписанным в окружность . Видео:2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать Теорема об окружности, описанной около треугольникаТеорема 1. Около любого треугольника можно описать окружность. Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения серединных перпендикуляров к его сторонам. Проведем отрезки OA, OB и OC. Поскольку точка O равноудалена от точек A, B и C, то OA=OB=OC. Тогда окружность с центром O и радиусом OA проходит через все три вершины треугольника ABC и, следовательно, является окружностью, описанной около треугольника ABC. Из теоремы 1 следует, что центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника. Замечание 1. Около любого треугольника можно описать только одну окружность. Доказательство. Допустим, что около треугольника можно описать две окружности. Тогда центр каждой из этих окружностей равноудален от вершин треугольника и совпадает с точкой O пересечения серединных перпендикуляров сторон треугольника. Радиус этих окружностей равен расстоянию от точки O до вершин треугольника. Поэтому эти окружности совпадают. Видео:Радиус описанной окружностиСкачать Теорема синусовО чем эта статья: Статья находится на проверке у методистов Skysmart. Видео:8 класс, 39 урок, Описанная окружностьСкачать Доказательство теоремы синусовТеорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов. Нарисуем стандартный треугольник и запишем теорему формулой:
Формула теоремы синусов:
Докажем теорему с помощью формулы площади треугольника через синус его угла.
Из этой формулы мы получаем два соотношения:
bc sinα = ca sinβ Из этих двух соотношений получаем:
Теорема синусов для треугольника доказана. Эта теорема пригодится, чтобы найти:
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать Доказательство следствия из теоремы синусовУ теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.
где R — радиус описанной около треугольника окружности. Так образовались три формулы радиуса описанной окружности:
Основной смысл следствия из теоремы синусов заключен в этой формуле:
Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла. Для доказательства следствия теоремы синусов рассмотрим три случая. 1. Угол ∠А = α — острый в треугольнике АВС.
Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС. Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1. Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла. BA1 = 2R, где R — радиус окружности Следовательно: R = α/2 sinα Для острого треугольника с описанной окружностью теорема доказана. 2. Угол ∠А = α — тупой в треугольнике АВС. Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°. Следовательно, ∠А1 = 180° — α.
Вспомним свойство вписанного в окружность четырёхугольника:
Также известно, что sin(180° — α) = sinα. В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом: α = 2R sin (180° — α) = 2R sinα Следовательно: R = α/2 sinα Для тупого треугольника с описанной окружностью теорема доказана. Часто используемые тупые углы:
3. Угол ∠А = 90°.
В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.
Для прямоугольного треугольника с описанной окружностью теорема доказана. Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике. Видео:Задание 24 ОГЭ по математике #7Скачать Теорема о вписанном в окружность углеИз теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно. Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее. Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.
∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC. Формула теоремы о вписанном угле:
Следствие 1 из теоремы о вписанном в окружность угле Вписанные углы, опирающиеся на одну дугу, равны.
∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB). Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:
На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности. Следствие 2 из теоремы о вписанном в окружность угле Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.
ВС — диаметр описанной окружности, следовательно ∠COB = 180°.
Следствие 3 из теоремы о вписанном в окружность угле Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:
Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле. Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ. Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°. Следовательно: α + γ = 180°. Поэтому: ∠A + ∠C = 180°. Следствие 4 из теоремы о вписанном в окружность угле Синусы противоположных углов вписанного четырехугольника равны. То есть: sinγ = sin(180° — α) Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα Видео:Задача 6 №27921 ЕГЭ по математике. Урок 138Скачать Примеры решения задачТеорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал. Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.
∠B = 180° — 45° — 15° = 120° Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета. В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:
Значит x = sin (4/5) ≈ 53,1°. Ответ: угол составляет примерно 53,1°. Видео:7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать ЗапоминаемОбычная теорема: стороны треугольника пропорциональны синусам противолежащих углов. > |