Om on ok ol как радиусы окружности

Окружность, вписанная в правильный многоугольник

На этом занятии мы рассмотрим следующую тему – «Окружность, вписанная в правильный многоугольник». В первую очередь дадим определение правильному многоугольнику. После чего докажем теорему о том, что внутри любого правильного многоугольника можно вписать окружность, и притом только одну. Кроме того, рассмотрим следствия из этой теоремы.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Вписанная и описанная окружности

Вы будете перенаправлены на Автор24

Видео:РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?Скачать

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?

Вписанная окружность

Если все стороны многоугольника являются касательными одной окружности, то такая окружность называется вписанной в многоугольник (рис 1).

Многоугольник, удовлетворяющий условию определения 1, называется описанным около окружности.

Om on ok ol как радиусы окружности

Рисунок 1. Вписанная окружность

Видео:Что такое круг окружность радиусСкачать

Что такое круг окружность радиус

Теорема 1 (об окружности, вписанной в треугольник)

В любой треугольник можно вписать окружность и притом только одну.

Доказательство.

Рассмотрим треугольник $ABC$. Проведем в нем биссектрисы, которые пересекаются в точке $O$ и проведем из нее перпендикуляры на стороны треугольника (Рис. 2)

Om on ok ol как радиусы окружности

Рисунок 2. Иллюстрация теоремы 1

Существование: Проведем окружность с центром в точке $O$ и радиусом $OK. $Так как точка $O$ лежит на трех биссектрисах, то она равноудалена от сторон треугольника $ABC$. То есть $OM=OK=OL$. Следовательно, построенная окружность также проходит через точки $M и L$. Так как $OM,OK и OL$ — перпендикуляры к сторонам треугольника, то по теореме о касательной к окружности, построенная окружность касается всех трех сторон треугольника. Следовательно, в силу произвольности треугольника, в любой треугольник можно вписать окружность.

Готовые работы на аналогичную тему

Единственность: Предположим, что в треугольник $ABC$ можно вписать еще одну окружность с центром в точке $O’$. Её центр равноудален от сторон треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OK$. Но тогда эта окружность совпадет с первой.

Теорема доказана.

Следствие 1: Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.

Приведем еще несколько фактов, связанных с понятием вписанной окружности:

Не во всякий четырехугольник можно вписать окружность.

В любом описанном четырехугольнике суммы противоположных сторон равны.

Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Описанная окружность

Если на окружности лежат все вершины многоугольника, то окружность называется описанной около многоугольника (Рис. 3).

Многоугольник, удовлетворяющий условию определения 2, называется вписанным в окружность.

Om on ok ol как радиусы окружности

Рисунок 3. Описанная окружность

Видео:Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте СегментаСкачать

Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте Сегмента

Теорема 2 (об окружности, описанной около треугольника)

Около любого треугольника можно описать окружность и притом только одну.

Доказательство.

Рассмотрим треугольник $ABC$. Проведем в нем серединные перпендикуляры, пересекающиеся в точке $O$, и соединим ее с вершинами треугольника (рис. 4)

Om on ok ol как радиусы окружности

Рисунок 4. Иллюстрация теоремы 2

Существование: Построим окружность с центром в точке $O$ и радиусом $OC$. Точка $O$ равноудалена от вершин треугольника, то есть $OA=OB=OC$. Следовательно, построенная окружность проходит через все вершины данного треугольника, значит, она является описанной около этого треугольника.

Единственность: Предположим, что около треугольника $ABC$ можно описать еще одну окружность с центром в точке $O’$. Её центр равноудален от вершин треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OC.$ Но тогда эта окружность совпадет с первой.

Теорема доказана.

Следствие 1: Центр описанной около треугольника окружности совпадает с точкой пересечения его серединных перпендикуляров.

Приведем еще несколько фактов, связанных с понятием описанной окружности:

Около четырехугольника не всегда можно описать окружность.

В любом вписанном четырехугольнике сумма противоположных углов равна $^0$.

Если сумма противоположных углов четырехугольника равна $^0$, то около него можно описать окружность.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Пример задачи на понятия вписанной и описанной окружности

В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.

Решение.

Рассмотрим треугольник $ABC$. По следствию 1, мы знаем, что центр вписанной окружности лежит на пересечении биссектрис. Проведем биссектрисы $AK$ и $BM$, которые пересекаются в точке $O$. Проведем перпендикуляр $OH$ из точки $O$ на сторону $BC$. Изобразим рисунок:

Om on ok ol как радиусы окружности

Так как треугольник равнобедренный, то $BM$ и медиана и высота. По теореме Пифагора $^2=^2-^2, BM=sqrt<^2-frac<^2>>=sqrt=sqrt=3$. $OM=OH=r$ — искомый радиус вписанной окружности. Так как $MC$ и $CH$ отрезки пересекающихся касательных, то по теореме о пересекающихся касательных, имеем $CH=MC=4 см$. Следовательно, $BH=5-4=1 см$. $BO=3-r$. Из треугольника $OHB$, по теореме Пифагора, получим:

Ответ: $frac$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 29 03 2021

Видео:Окружность. Как найти Радиус и ДиаметрСкачать

Окружность. Как найти Радиус и Диаметр

Радиус и диаметр окружности

Om on ok ol как радиусы окружности

Окружность — это фигура в геометрии, которая состоит
из множества точек, расположенных на одинаковом
расстоянии от заданной точки (центра окружности).

Радиус окружности — это отрезок, который соединяет
центр окружности с какой-либо точкой окружности.

Диаметр окружности — это отрезок, который соединяет
две любые точки окружности, причем сам отрезок
должен проходить через центр окружности

Eсли от центра окружности провести
отрезки ко всем точкам окружности, то они будут иметь
одинаковую длину, то есть равны. В математике
такие отрезки называют радиусами.

Все радиусы окружности, как и диаметры окружности,
равны между собой, имеют одинаковую длину.

Om on ok ol как радиусы окружности

На рисунке выше изображена окружность, с центром в точке O.
OA = OB = OC — радиусы окружности;
BC = CO + OB — диаметр окружности;

Радиус окружности принято обозначать маленькой либо большой буквой, r или R.
Диаметр окружности обозначают буквой D.

Диаметр окружности условно состоит из двух
радиусов и равен длинам этих радиусов.

Длину радиуса окружности можно найти через диаметр окружности.
Для этого достаточно разделить на два длину диаметра окружности,
получившееся число и будет радиусом.

Формула радиуса окружности через диаметр:

Формула диаметра окружности через радиус:

Также, окружность, может быть вписанной в фигуру, описанной
около фигуры; или вообще может быть не вписана и не описана.
Формула радиуса окружности зависит от того находится фигура
внутри окружности, или окружность находится около фигуры.

Существует радиус вписанной окружности
и радиус описанной окружности.

Формулы радиуса вписанной и радиуса описанной окружностей
зависят в первую очередь от геометрической фигуры.

Радиус вписанной окружности — это радиус окружности,
которая вписана в геометрическую фигуру.

Радиус описанной окружности — это радиус окружности,
которая описана около геометрической фигуры.

🎥 Видео

Радиус и диаметрСкачать

Радиус и диаметр

Круг. Окружность (центр, радиус, диаметр)Скачать

Круг. Окружность (центр, радиус, диаметр)

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Вписанный угол, опирающийся на хорду, равную радиусу окружностиСкачать

Вписанный угол, опирающийся на хорду, равную радиусу окружности

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Радиус описанной окружностиСкачать

Радиус описанной окружности

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104
Поделиться или сохранить к себе: