Окружность вписанная в трапецию abcd касается ее боковых сторон

Окружность вписанная в трапецию abcd касается ее боковых сторон

Окружность, вписанная в трапецию ABCD, касается ее боковых сторон AB и CD в точках M и N соответственно. Известно, что AM = 8MB и DN = 2CN.

а) Докажите, что AD = 4BC.

б) Найдите длину отрезка MN, если радиус окружности равен Окружность вписанная в трапецию abcd касается ее боковых сторон

а) Пусть окружность касается оснований BC и AD в точках K и L соответственно, а ее центр находится в точке O.

Лучи AO и BO являются биссектрисами углов BAD и ABC соответственно, поэтому

Окружность вписанная в трапецию abcd касается ее боковых сторон

то есть треугольник AOB прямоугольный. Аналогично, треугольник COD тоже прямоугольный. Пусть BM = x, CN = y, тогда AM = 8x, DN = 2y.

Окружность вписанная в трапецию abcd касается ее боковых сторон

б) Заметим, что Окружность вписанная в трапецию abcd касается ее боковых сторонпоэтому Окружность вписанная в трапецию abcd касается ее боковых сторон

Пусть прямые AB и CD пересекаются в точке P, а прямые MN и PO пересекаются в точке Q. Тогда треугольники BPC и APD подобны, поэтому AP = 4BP, AB = 3BP, BP = 3x, PN = PM = 4x. Прямая PO является серединным перпендикуляром к MN. В прямоугольном треугольнике OMP получаем:

Окружность вписанная в трапецию abcd касается ее боковых сторон

Значит, Окружность вписанная в трапецию abcd касается ее боковых сторон

Приведем другое решение пункта а)

Пусть окружность касается оснований BC и AD в точках K и L соответственно, ее центр находится в точке O, а BM = x, CN = y, тогда AM = 8x, DN = 2y. Поскольку точки M, K, N и L — точки касания, Окружность вписанная в трапецию abcd касается ее боковых сторон Окружность вписанная в трапецию abcd касается ее боковых сторон Окружность вписанная в трапецию abcd касается ее боковых сторони Окружность вписанная в трапецию abcd касается ее боковых сторонОпустим высоты BH и CQ:

Окружность вписанная в трапецию abcd касается ее боковых сторонОкружность вписанная в трапецию abcd касается ее боковых сторон

тогда по теореме Пифагора Окружность вписанная в трапецию abcd касается ее боковых сторон Окружность вписанная в трапецию abcd касается ее боковых сторонПоскольку Окружность вписанная в трапецию abcd касается ее боковых сторонимеем Окружность вписанная в трапецию abcd касается ее боковых стороноткуда Окружность вписанная в трапецию abcd касается ее боковых сторон

Видео:Трапеция и вписанная окружностьСкачать

Трапеция и вписанная окружность

Задача 16865 Окружность, вписанная в трапецию ABCD.

Условие

Окружность вписанная в трапецию abcd касается ее боковых сторон

Окружность, вписанная в трапецию ABCD, касается ее боковых сторон АВ и CD в точках М и N соответственно. Известно, что АМ=8МВ и DN=2CN.

а) Докажите, что AD=4BC.

б) Найдите длину отрезка MN, если радиус окружности равен sqrt(6)

Решение

Окружность вписанная в трапецию abcd касается ее боковых сторон

а)
Пусть ВМ=х, тогда АМ=8х
СN=y, тогда DN=2y
По свойству касательной, проведенной к окружности из одной точки, отрезки касательных равны.
Поэтому
ВМ=ВК=x
СN=CK=y
AM=AP=8x
DN=DP=2y

Сумма углов трапеции, прилежащих к боковой стороне, равна 180 градусов.
Биссектрисы АО и ВО делят углы А и В пополам, значит сумма острых углов треугольника АОВ равна 90 градусов.
Треугольник АОВ- прямоугольный.
Высота ОM прямоугольного треугольника АОВ есть среднее пропорциональное между отрезками АМ и ВМ.
ОM^2=AM*BM
OM=r
r^2=8x*x
r^2=8x^2
Аналогично, Δ СOD — прямоугольный и
ON^2=CN*ND
r^2=y*2y
r^2=2y^2

AD=AP+DP=8x+2y=8x+2*2x=12x
BC=BK+CK=x+y=x+2x=3x/(sqrt(x^2+r^2
AD=12x=4*(3x)=4BC

б)
r=sqrt(6)
Обозначим
∠ МОВ= ∠ ВОК= альфа
∠ KOC= ∠ CON= бета
sin альфа =MB/BO=x/sqrt(x^2+r^2)
cos альфа =MO/BO=r/sqrt(x^2+r^2)
sin бета=CN/CO=y/sqrt(y^2+r^2)
cos бета =ON/CO=r/sqrt(y^2+r^2)

sin( альфа + бета )=
=sin альфа*cos бета +cos альфа *sin бета =
=r*(x+y)/(sqrt(x^2+r^2)*sqrt(y^2+r^2))

Треугольник MON — равнобедренный,
МО=ОN=r
∠ MON=2*( альфа + бета )
Высота ОF делит основание MN пополам и сторону MN пополам.
MF=(1/2)MN=OM*sin( альфа + бета )=
MN=2*r*r*(x+y)//(sqrt(x^2+r^2)*sqrt(y^2+r^2))
Так как у=2х и r^2=6 и r^2=8x^2; r^2=2y^2, то
MN=
=2*r^2*((r/sqrt(8))+(r/sqrt(2)))/(r*sqrt((1/8)+1)*r*sqrt((1/2)+1))=
=(2*r*3/(2sqrt(2)))/(sqrt(9/8)*sqrt(3/2))=4

О т в е т. MN=4 Окружность вписанная в трапецию abcd касается ее боковых сторон

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Окружность, вписанная в трапецию ABCD с основаниями AD и ВС, касается боковых сторон АВ и CD в точках F и Т соответственно. Докажите, что AF * FB = СТ * TD.

Видео:Окружность, вписанная в трапециюСкачать

Окружность, вписанная в трапецию

Ваш ответ

Видео:Окружность, вписанная в трапецию.A circle inscribed in a trapezoid.Скачать

Окружность, вписанная в трапецию.A circle inscribed in a trapezoid.

решение вопроса

Видео:8 класс, 38 урок, Вписанная окружностьСкачать

8 класс, 38 урок, Вписанная окружность

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,029
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

🌟 Видео

Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основанияСкачать

Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основания

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. окружность проходит через точки C,DСкачать

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. окружность проходит через точки C,D

14.43.1. Планиметрия. Гордин Р.К.Скачать

14.43.1. Планиметрия. Гордин Р.К.

ОГЭ Задание 25 Демонстрационный вариант 2022, математикаСкачать

ОГЭ Задание 25 Демонстрационный вариант 2022, математика

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Вписанная окружностьСкачать

Вписанная окружность

ОКРУЖНОСТЬ, ВПИСАННАЯ В ТРАПЕЦИЮ VictorSh ЯГУБОВ РФСкачать

ОКРУЖНОСТЬ, ВПИСАННАЯ В ТРАПЕЦИЮ VictorSh  ЯГУБОВ РФ

Вписанная и описанная трапеции. КлассикаСкачать

Вписанная и описанная трапеции. Классика

Геометрия В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит черезСкачать

Геометрия В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через

ОГЭ Задание 24 Трапеция Вписанная окружностьСкачать

ОГЭ Задание 24 Трапеция Вписанная окружность

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторонуСкачать

Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторону
Поделиться или сохранить к себе: