Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Прямоугольник. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).

Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Можно дать и другое определение прямоугольника.

Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Свойства прямоугольника

Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.

  • 1. Стороны прямоугольника являются его высотами.
  • 2. Все углы прямоугольника прямые.
  • 3. Квадрат диагонали прямоугольника равен сумме квадратов его соседних двух сторон.
  • 4. Диагонали прямоугольника равны.
  • 5. Около любого прямоугольника можно описать окружность, при этом диаметр описанной окружности равна диагонали прямоугольника.

Длиной прямоугольника называется более длинная пара его сторон.

Шириной прямоугольника называется более короткая пара его сторон.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Диагональ прямоугольника

Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.

Окружность вписанная в прямоугольник сторона прямоугольника равна 5

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Окружность вписанная в прямоугольник сторона прямоугольника равна 5
Окружность вписанная в прямоугольник сторона прямоугольника равна 5.(1)

Из равенства (1) найдем d:

Окружность вписанная в прямоугольник сторона прямоугольника равна 5.(2)

Пример 1. Стороны прямоугольника равны Окружность вписанная в прямоугольник сторона прямоугольника равна 5. Найти диагональ прямоугольника.

Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя Окружность вписанная в прямоугольник сторона прямоугольника равна 5в (2), получим:

Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Ответ: Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Окружность, описанная около прямоугольника

Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):

Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Формула радиуса окружности описанной около прямоугольника

Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.

Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть

( small R=frac )(3)

Подставляя (3) в (2), получим:

( small R=frac<large sqrt> )(4)

Пример 2. Стороны прямоугольника равны Окружность вписанная в прямоугольник сторона прямоугольника равна 5. Найти радиус окружности, описанной вокруг прямоугольника.

Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя Окружность вписанная в прямоугольник сторона прямоугольника равна 5в (4), получим:

Окружность вписанная в прямоугольник сторона прямоугольника равна 5
Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Ответ: Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Периметр прямоугольника

Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Периметр прямоугольника вычисляется формулой:

Окружность вписанная в прямоугольник сторона прямоугольника равна 5(5)

где ( small a ) и ( small b ) − стороны прямоугольника.

Пример 3. Стороны прямоугольника равны Окружность вписанная в прямоугольник сторона прямоугольника равна 5. Найти периметр прямоугольника.

Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя Окружность вписанная в прямоугольник сторона прямоугольника равна 5в (5), получим:

Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Ответ: Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Задача 6 №27934 ЕГЭ по математике. Урок 148

Формулы сторон прямоугольника через его диагональ и периметр

Выведем формулу вычисления сторон прямоугольника, если известны диагональ ( small d ) и периметр ( small P ) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие ( small frac P2>d ) (это следует из неравенства треугольника).

Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:

Окружность вписанная в прямоугольник сторона прямоугольника равна 5(6)
Окружность вписанная в прямоугольник сторона прямоугольника равна 5(7)

Из формулы (7) найдем ( small b ) и подставим в (6):

Окружность вписанная в прямоугольник сторона прямоугольника равна 5(8)
Окружность вписанная в прямоугольник сторона прямоугольника равна 5(9)

Упростив (4), получим квадратное уравнение относительно неизвестной ( small a ):

Окружность вписанная в прямоугольник сторона прямоугольника равна 5(10)

Вычислим дискриминант квадратного уравнения (10):

Окружность вписанная в прямоугольник сторона прямоугольника равна 5Окружность вписанная в прямоугольник сторона прямоугольника равна 5(11)

Сторона прямоугольника вычисляется из следующих формул:

Окружность вписанная в прямоугольник сторона прямоугольника равна 5(12)

После вычисления ( small a ), сторона ( small b ) вычисляется или из формулы (12), или из (8).

Примечание. Легко можно доказать, что

( frac

>d ; ⇒ ; P>2cdot d ; ⇒ ) ( small P^2>4 cdot d^2 ; ⇒ ; 4d^2-P^2 2d .) Следовательно выполняется неравенство (*).

Пример 4. Диагональ прямоугольника равна Окружность вписанная в прямоугольник сторона прямоугольника равна 5, а периметр равен Окружность вписанная в прямоугольник сторона прямоугольника равна 5. Найти стороны прямоугольника.

Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант ( small D ) из формулы (11). Для этого подставим Окружность вписанная в прямоугольник сторона прямоугольника равна 5, Окружность вписанная в прямоугольник сторона прямоугольника равна 5в (11):

Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Подставляя значения Окружность вписанная в прямоугольник сторона прямоугольника равна 5и Окружность вписанная в прямоугольник сторона прямоугольника равна 5в первую формулу (12), получим:

Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Найдем другую сторону ( small b ) из формулы (8). Подставляя значения Окружность вписанная в прямоугольник сторона прямоугольника равна 5и Окружность вписанная в прямоугольник сторона прямоугольника равна 5в формулу, получим:

Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Ответ: Окружность вписанная в прямоугольник сторона прямоугольника равна 5, Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Признаки прямоугольника

Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.

Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.

Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.

Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Вписанная окружность

Окружность вписанная в прямоугольник сторона прямоугольника равна 5

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      Окружность вписанная в прямоугольник сторона прямоугольника равна 5
    • Четырехугольник
      Окружность вписанная в прямоугольник сторона прямоугольника равна 5
    • Многоугольник
      Окружность вписанная в прямоугольник сторона прямоугольника равна 5

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    Видео:2089 Найдите диагональ прямоугольника вписанного в окружность радиус которой равен 5Скачать

    2089 Найдите диагональ прямоугольника вписанного в окружность радиус которой равен 5

    Радиус окружности, описанной около прямоугольника, равен 5 см. Одна сторона прямоугольника равна 6 см. Вычислите: а) площадь прямоугольника;

    Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Ваш ответ

    Видео:Прямоугольник и окружностьСкачать

    Прямоугольник и окружность

    решение вопроса

    Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

    Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

    Похожие вопросы

    • Все категории
    • экономические 43,282
    • гуманитарные 33,619
    • юридические 17,900
    • школьный раздел 606,989
    • разное 16,829

    Популярное на сайте:

    Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

    Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

    Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

    Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

    💥 Видео

    Теорема Пифагора для чайников)))Скачать

    Теорема Пифагора для чайников)))

    9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

    9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

    Длина окружности. Площадь круга. 6 класс.Скачать

    Длина окружности. Площадь круга. 6 класс.

    Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать

    Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математика

    Геометрия. ОГЭ по математике. Задание 16Скачать

    Геометрия. ОГЭ по математике. Задание 16

    SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

    SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

    Вся геометрия 7-9 класса в 5 задачах | Математика | TutorOnlineСкачать

    Вся геометрия 7-9 класса в 5 задачах | Математика | TutorOnline

    Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать

    Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.
    Поделиться или сохранить к себе: