Определение параллельных прямых виды углов при пересечении двух прямых секущей

Углы при пересечении двух прямых

Если какие-нибудь две прямые пересечены третьей прямой, то пересекающая их прямая называется секущей по отношению к прямым, которые она пересекает.

При пересечении двух прямых третьей, образуется два вида углов: внешние и внутренние.

Определение параллельных прямых виды углов при пересечении двух прямых секущей

На рисунке изображены две прямые a и b, пересекаемые прямой c. Прямая c по отношению к прямым a и b является секущей. Синим цветом на рисунке обозначены внешние углы (∠1, ∠2, ∠7 и ∠8), а красным — внутренние углы (∠3, ∠4, ∠5 и ∠6).

Также при пересечении двух прямых третьей, образовавшиеся углы получают попарно следующие названия:

Соответственные углы: ∠1 и ∠5, ∠3 и ∠7, ∠2 и ∠6, ∠4 и ∠8.Определение параллельных прямых виды углов при пересечении двух прямых секущей
Внутренние накрест лежащие углы: ∠3 и ∠6, ∠4 и ∠5.Определение параллельных прямых виды углов при пересечении двух прямых секущей
Внешние накрест лежащие углы: ∠1 и ∠8, ∠2 и ∠7.Определение параллельных прямых виды углов при пересечении двух прямых секущей
Внутренние односторонние углы: ∠3 и ∠5, ∠4 и ∠6.Определение параллельных прямых виды углов при пересечении двух прямых секущей
Внешние односторонние углы: ∠1 и ∠7, ∠2 и ∠8.Определение параллельных прямых виды углов при пересечении двух прямых секущей

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Углы при пересечении параллельных прямых

Если секущая пересекает две параллельные прямые линии, то:

  • внутренние накрест лежащие углы равны;
  • сумма внутренних односторонних углов равна 180°;
  • соответственные углы равны;
  • внешние накрест лежащие углы равны;
  • сумма внешних односторонних углов равна 180°.

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Геометрия. Урок 2. Углы

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Определение параллельных прямых виды углов при пересечении двух прямых секущей

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Углы

Видео:Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.Скачать

Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.

Понятие угла

Угол – геометрическая фигура, образованная двумя лучами, выходящими из одной точки.

Стороны угла – лучи, которые образуют угол.

Вершина угла – точка, из которой выходят лучи.

Определение параллельных прямых виды углов при пересечении двух прямых секущей

Угол называют тремя заглавными латинскими буквами, которыми обозначены вершина и две точки, расположенные на сторонах угла.

Важно: в названии буква, обозначающая вершину угла, стоит между двумя буквами, обозначающими точки на сторонах угла. Так, угол, изображенный на рисунке, можно назвать: ∠ A O B или ∠ B O A , но ни в коем случае не ∠ O A B , ∠ O B A , ∠ A B O , ∠ B A O .

Величину угла измеряют в градусах. ∠ A O B = 24 ° .

Видео:УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙ

Виды углов:

Видео:Геометрия 7 класс | Вертикальные, смежные, накрест лежащие и другие углы (теория) | МАТЕМАТИКА 2021Скачать

Геометрия 7 класс | Вертикальные, смежные, накрест лежащие и другие углы (теория) | МАТЕМАТИКА 2021

Биссектриса угла

Биссектриса угла – это луч с началом в вершине угла, делящий его на два равных угла.

Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.

O D – биссектриса угла ∠ A O B . Она делит этот угол на два равных угла.

∠ A O D = ∠ B O D = ∠ A O B 2

Точка D – произвольная точка на биссектрисе. Она равноудалена от сторон O A и O B угла ∠ A O B .

Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Углы, образованные при пересечении двух прямых

Вертикальные углы – пара углов, у которых стороны одного угла являются продолжением сторон второго.

Свойство: вертикальные углы равны.

Смежные углы – пара углов, у которых одна сторона общая, а две другие стороны расположены на одной прямой.

Свойство: сумма смежных углов равна 180 ° .

( 1 ) и ( 3 )
( 2 ) и ( 4 )

называются вертикальными .

По свойству вертикальных углов:

∠ C O D = ∠ A O B
∠ B O D = ∠ A O C

( 1 ) и ( 2 )
( 2 ) и ( 3 )
( 3 ) и ( 4 )
( 4 ) и ( 1 )

называются смежными .

По свойству смежных углов:

∠ C O D + ∠ D O B = 180 ° ∠ D O B + ∠ B O A = 180 ° ∠ B O A + ∠ A O C = 180 ° ∠ A O C + ∠ C O D = 180 °

Видео:Пары углов в геометрииСкачать

Пары углов в геометрии

Углы, образованные при пересечении двух прямых секущей

Прямая, пересекающая две заданные прямые, называется секущей этих прямых.

Существует пять видов углов, которые образуются при пересечении двух прямых секущей.

( 1 ) и ( 5 )
( 2 ) и ( 6 )
( 3 ) и ( 7 )
( 4 ) и ( 8 )

называются соответственными .
(Легко запомнить: они соответствуют друг другу, похожи друг на друга).

( 3 ) и ( 5 )
( 4 ) и ( 6 )

называются внутренними односторонними .
(Легко запомнить: лежат по одну сторону от секущей, между двумя прямыми).

( 1 ) и ( 7 )
( 2 ) и ( 8 )

называются внешними односторонними .
(Легко запомнить: лежат по одну сторону от секущей по разные стороны от двух прямых).

( 3 ) и ( 6 )
( 4 ) и ( 5 )

называются внутренними накрест лежащими .
(Легко запомнить: лежат между двумя прямыми, расположены наискосок друг относительно друга).

( 1 ) и ( 8 )
( 2 ) и ( 7 )

называются внешними накрест лежащими .
(Легко запомнить: лежат по разные стороны от двух прямых, расположены наискосок друг относительно друга).

Если прямые, которые пересекает секущая, параллельны , то углы имеют следующие свойства:

  • Соответственные углы равны.
  • Внутренние накрест лежащие углы равны.
  • Внешние накрест лежащие углы равны.
  • Сумма внутренних односторонних углов равна 180 ° .
  • Сумма внешних односторонних углов равна 180 ° .

Видео:Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Сумма углов многоугольника

Сумма углов произвольного n -угольника вычисляется по формуле:

S n = 180 ° ⋅ ( n − 2 )

где n – это количество углов в n -угольнике.

Пользуясь этой формулой, можно вычислить сумму углов для произвольного n -угольника.

Сумма углов треугольника: S 3 = 180 ° ⋅ ( 3 − 2 ) = 180 °

Сумма углов четырехугольника: S 4 = 180 ° ⋅ ( 4 − 2 ) = 360 °

Сумма углов пятиугольника: S 5 = 180 ° ⋅ ( 5 − 2 ) = 540 °

Так можно продолжать до бесконечности.

Правильный многоугольник – это выпуклый многоугольник, у которого все стороны равны и все углы равны.

На рисунках изображены примеры правильных многоугольников:

Определение параллельных прямых виды углов при пересечении двух прямых секущей Определение параллельных прямых виды углов при пересечении двух прямых секущейОпределение параллельных прямых виды углов при пересечении двух прямых секущей

Чтобы найти величину угла правильного n -угольника , необходимо сумму углов этого многоугольника разделить на количество углов.

α n = 180 ° ⋅ ( n − 2 ) n

Видео:Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с углами

Видео:Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

51. Планиметрия Определение параллельных прямых виды углов при пересечении двух прямых секущейЧитать 0 мин.

Видео:ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углы

51.65. Углы и параллельные прямые

Взаимное расположение прямых:

  • Прямые пересекаются, у них есть одна общая точка.
  • Прямые не пересекаются, у них нет общих точек. Такие прямые называются параллельными.

При пересечении двух прямых образуются вертикальные и смежные углы.

Вертикальные углы — равны.

Определение параллельных прямых виды углов при пересечении двух прямых секущей

Сумма смежных углов равна 180°.

Определение параллельных прямых виды углов при пересечении двух прямых секущей

Параллельные прямые

Прямые называются параллельными, если они не пересекаются, сколько бы их не продолжать.

О параллельных прямых:

  • Если одна из пары параллельных прямых параллельна третьей прямой, то все прямые параллельны между собой.
  • На плоскости через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.
  • Если две прямые на плоскости перпендикулярны третьей прямой, то они параллельны.

При пересечении двух параллельных прямых секущей образуются следующие углы:

  • внутренние накрест лежащие (4 и 5, 3 и 6) — попарно равны;
  • внешние накрест лежащие (1 и 8, 2 и 7) — попарно равны;
  • соответственные (1 и 5, 2 и 6, 3 и 7, 4 и 8) — попарно равны;
  • внутренние односторонние (3 и 5, 4 и 6) — сумма таких углов равна 180°;
  • внешние односторонние (1 и 7, 2 и 8) — сумма таких углов равна 180°.

Определение параллельных прямых виды углов при пересечении двух прямых секущей

Часто для использования свойств углов, полученных при пересечении двух параллельных прямых секущей, необходимо применять дополнительные построения.

Пример: Даны углы с попарно параллельными сторонами. Что можно сказать об углах 1 и 2? Что можно сказать об углах 3 и 4?

Определение параллельных прямых виды углов при пересечении двух прямых секущей

Продолжим стороны углов до пересечения:

Определение параллельных прямых виды углов при пересечении двух прямых секущей

Получаем, что углы 1 и 2 равны, т. к. являются накрест лежащими при параллельных прямых.

Сумма углов 3 и 4 равна 180°, т. к. они являются односторонними при параллельных прямых.

Теорема Фалеса: При пересечении сторон угла параллельными прямыми стороны угла делятся на пропорциональные отрезки (образуются подобные треугольники).

💥 Видео

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с

Углы при пересечении двух прямых секущей. Свойства и признаки параллельности прямых.Скачать

Углы при пересечении двух прямых секущей. Свойства и признаки параллельности прямых.

7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210Скачать

№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 классСкачать

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 класс

Углы при пересечении двух прямыхСкачать

Углы при пересечении двух прямых

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

7 класс, 11 урок, Смежные и вертикальные углыСкачать

7 класс, 11 урок, Смежные и вертикальные углы

№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°Скачать

№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°
Поделиться или сохранить к себе: