В данной публикации представлены формулы, с помощью которых можно найти радиус шара (сферы), вписанного в правильную пирамиду: треугольную, четырехугольную, шестиугольную и тетраэдр.
- Формулы расчета радиуса шара (сферы)
- Правильная треугольная пирамида
- Правильная четырехугольная пирамида
- Правильная шестиугольная пирамида
- Сфера, вписанная в пирамиду
- Биссекторная плоскость. Основное свойство биссекторной плоскости
- Сфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы
- Радиус сферы, вписанной в правильную n — угольную пирамиду
- Сфера, вписанная в треугольную пирамиду. Формула для радиуса вписанной сферы
- Окружность вписанная в правильную шестиугольную пирамиду
- 🌟 Видео
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Формулы расчета радиуса шара (сферы)
Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.
Правильная треугольная пирамида
- a – ребро основания пирамиды, т.е. это равные отрезки AB, AC и BC;
Если известны значения этих величин, то найти радиус (r) вписанного шара/сферы можно по формуле:
Частный случай правильной треугольной пирамиды – это правильный тетраэдр. Для него формула нахождения радиуса выглядит следующим образом:
Правильная четырехугольная пирамида
- a – ребро основания пирамиды, т.е. AB, BC, CD и AD;
- EF – высота пирамиды (h).
Радиус (r) вписанного шара/сферы рассчитывается так:
Правильная шестиугольная пирамида
- a – ребро основания пирамиды, т.е. AB, BC, CD, DE, EF, AF;
- GL – высота пирамиды (h).
Радиус (r) вписанного шара/сферы вычисляется по формуле:
Видео:ЕГЭ Задание 14 Правильная шестиугольная пирамидаСкачать
Сфера, вписанная в пирамиду
Биссекторная плоскость. Основное свойство биссекторной плоскости |
Сфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы |
Радиус сферы, вписанной в правильную n — угольную пирамиду |
Сфера, вписанная в треугольную пирамиду. Формула для радиуса вписанной сферы |
Видео:Вычисление радиуса сферы, вписанной в правильную треугольную пирамидуСкачать
Биссекторная плоскость. Основное свойство биссекторной плоскости
Определение 1. Биссекторной плоскостью двугранного угла называют такую плоскость, которая проходит через ребро двугранного угла и делит этот угол на два равных двугранных угла (рис. 1).
Утверждение 1. Точка, расположенная внутри двугранного угла, находится на одном и том же расстоянии от граней этого угла тогда и только тогда, когда она лежит на биссекторной плоскости.
Доказательство. Рассмотрим произвольную точку O, расположенную внутри двугранного угла, и проведем через эту точку плоскость δ , перпендикулярную к ребру AB двугранного угла (рис. 2).
Плоскость δ пересекает ребро AB двугранного угла в точке C, а грани двугранного угла α и β по лучам CD и CE соответственно. Угол DCE является линейным углом двугранного угла. Биссекторная плоскость γ пересекает плоскость δ по биссектрисе CF линейного угла DCE .
Таким образом, справедливость утверждения вытекает из соответствующих теорем о свойствах биссектрисы угла. Доказано.
Следствие 1. Если сфера, расположенная внутри двугранного угла, касается каждой из плоскостей граней этого угла, то центр сферы находится на биссекторной плоскости двугранного угла (рис. 3).
Видео:Задание №690 — ГДЗ по геометрии 11 класс (Атанасян Л.С.)Скачать
Сфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы
Определение 2. Сферой, вписанной в пирамиду, называют такую сферу, которая касается плоскостей всех граней пирамиды, причем точки касания лежат на гранях пирамиды (рис. 4).
Определение 3. Если сфера вписана в пирамиду, то пирамиду называют описанной около сферы.
Если сфера вписана в пирамиду, то она касается граней каждого внутреннего двугранного угла, образованного соседними гранями пирамиды. В соответствии со следствием 1 центр вписанной в пирамиду сферы должен находиться в точке пересечения биссекторных плоскостей всех внутренних двугранных углов, образованных соседними гранями пирамиды.
Если у пирамиды нет точки, в которой пересекаются биссекторные плоскости всех внутренних двугранных углов, образованных соседними гранями пирамиды, то в такую пирамиду нельзя вписать сферу.
Замечание 1. Для того, чтобы проверить, можно ли в пирамиду вписать сферу, достаточно проверить, существует ли точка пересения биссекторных плоскостей всех внутренних двугранных углов при основании пирамиды. Если такая точка существует, то она будет равноудалена как от основания пирамиды, так и от каждой из боковых граней.
Рассмотрим несколько типов пирамид, в которые можно вписать сферу.
Утверждение 2. Если у пирамиды SA1A2 . An основание O перпендикуляра, опущенного из вершины S на плоскость основания пирамиды, лежит внутри многоугольника A1A2 . An , а все боковые грани пирамиды наклонены под одним и тем же углом к плоскости основания пирамиды, то в такую пирамиду можно вписать сферу.
Доказательство. Пусть все боковые грани пирамиды наклонены к плоскости основания под углом φ , а высота пирамиды равна h. Рассмотрим, например, боковую грань SA1A2 и проведем в ней высоту SB (рис. 5).
По теореме о трех перпендикулярах отрезок OB перпендикулярен ребру A1A2 . Следовательно, угол SBO является линейным углом двугранного угла между боковой гранью SA1A2 и плоскостью основания пирамиды и равен φ. Биссекторная плоскость этого двугранного угла пересекает высоту пирамиды в точке O’ (рис. 6).
Катет OB прямоугольного треугольника SOB выражается через высоту пирамиды h и угол φ по формуле
Катет OO’ прямоугольного треугольника OO’B выражается через высоту пирамиды h и угол φ по формуле
Поскольку длина отрезка OO’ не зависит от выбора боковой грани пирамиды, то биссекторные плоскости всех внутренних двугранных углов при основании пирамиды пересекаются в точке O’, которая и является центром вписанной в пирамиду сферы.
Доказательство утверждения 2 завершено.
Поскольку у любой правильной пирамиды все внутренние двугранные углы при основании равны, то справедливо
Следствие 2. В любую правильную пирамиду можно вписать сферу, причем ее радиус R выражается через высоту пирамиды h и внутренний двугранный угол при основании пирамиды φ по формуле
(1) |
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Радиус сферы, вписанной в правильную n — угольную пирамиду
Решение. Рассмотрим правильную n — угольную пирамиду SA1A2 . An и обозначим символом O’ центр вписанной в пирамиду сферы, а буквой O – центр основания пирамиды. Проведем плоскость через высоту пирамиды SO и апофему SB какой-либо боковой грани (рис. 7).
Буквой R на рисунке 7 обозначен радиус вписанной в пирамиду сферы, буквой r – радиус вписанной в основание пирамиды окружности, а буквой φ – внутренний двугранный угол при основании пирамиды. Из прямоугольного треугольника OSB получаем
(2) |
В силу следствия 2 из формул (1) и (2) получаем
из формулы (3) получаем соотношение
Ответ.
Следствие 3. Радиус сферы, вписанной в правильную треугольную пирамиду с высотой h и ребром основания a, равен
Следствие 4. Радиус сферы, вписанной в правильный тетраэдр с ребром a, равен
Следствие 5. Радиус сферы, вписанной в правильную четырехугольную пирамиду с высотой h и ребром основания a, равен
Следствие 6. Радиус сферы, вписанной в правильную шестиугольную пирамиду с высотой h и ребром основания a, равен
Видео:Решение C2 - сфера, вписанная в пирамиду. Подготовка к ЕГЭ по математике 2014Скачать
Сфера, вписанная в треугольную пирамиду.
Формула для радиуса вписанной сферы
Утверждение 3. В любую треугольную пирамиду можно вписать сферу.
Доказательство. Доказательство этого утверждения напоминает планиметрическое доказательство возможности вписать окружность в произвольный треугольник.
Действительно, пусть SABC – произвольный тетраэдр. Биссекторная плоскость внутреннего двугранного угла с ребром AC и биссекторная плоскость внутреннего двугранного угла с ребром AB пересекаются по некоторой прямой, проходящей через вершину A. Биссекторная плоскость внутреннего двугранного угла в ребром BC пересекает эту прямую в единственной точке O , которая и является центром вписанной сферы (рис. 8).
Получим формулу, позволяющую вычислить радиус вписанной в тетраэдр SABC сферы. Для этого заметим, что объем пирамиды SABC равен сумме объемов пирамид OABC, OSCA, OSAB, OSCB, причем высота каждой из пирамид OABC, OSCA, OSAB, OSCB равна радиусу R вписанной в пирамиду SABC сферы. Если обозначить площади граней тетраэдра SABC символами
а объемы пирамид SABC, OABC, OSCA, OSAB, OSCB – символами
то справедливы следующие равенства:
где символом Sполн обозначена площадь полной поверхности пирамиды SABC.
Замечание 2. Если в пирамиду (необязательно треугольную) можно вписать сферу, то, рассуждая аналогично, можно получить следующую формулу для радиуса вписанной в пирамиду сферы
где символами Vпир и Sполн обозначены объем и площадь полной поверхности пирамиды соответственно.
Видео:10 класс — Разбор задач по теме "Пирамида"Скачать
Окружность вписанная в правильную шестиугольную пирамиду
В правильную шестиугольную пирамиду, боковое ребро которой равно 10, а высота равна 6, вписана сфера. (Сфера касается всех граней пирамиды.)
а) Докажите, что площадь боковой поверхности пирамиды относится к площади основания как .
б)Найдите площадь этой сферы.
а) Пусть MH — высота правильной шестиугольной пирамиды с вершиной M, тогда треугольник AMH прямоугольный, откуда
Треугольник ABH равносторонний, следовательно, В треугольнике AMB высота
В правильном треугольнике AHB высота
Тогда косинус двугранного угла при основании пирамиды равен . А площадь основания пирамиды есть площадь боковой поверхности пирамиды умножить на косинус двугранного угла при основании. Отсюда и следует требуемое.
б) Центр O сферы, вписанной в правильную шестиугольную пирамиду, лежит на её высоте MH, точка K касания сферы и боковой грани AMB лежит на отрезке Треугольники MOK и MNH подобны, поэтому
где r — радиус сферы. Площадь сферы
Ответ :
Укажем другой путь нахождения радиуса.
Объем пирамиды равен
Площадь полной поверхности пирамиды равна
почему радиус касается именно прямой
Потому, что он перпендикулярен плоскости и лежит в плоскости
Можно ли рассмотреть треугольник как треугольник с вписанной окружностью и высчитать радиус по формуле где — полупериметр?
Осталось выяснить какое отношение указанная окружность имеет к вписанной в пирамиду сфере?
Пожалуйста, напишите подробно, как вычислить радиус из выражения, составленного в первом решении
В правильную шестиугольную пирамиду, боковое ребро которой равно а высота равна вписана сфера. (Сфера касается всех граней пирамиды.)
а) Докажите, что двугранный угол при основании пирамиды равен.
б) Найдите площадь этой сферы.
а) Пусть — высота правильной шестиугольной пирамиды с вершиной тогда треугольник AMH прямоугольный, откуда
Треугольник ABH равносторонний, следовательно, В треугольнике AMB высота
Двугранный угол при основании пирамиды равен углу MNH. Далее заметим, что в прямоугольном треугольнике MNH катет, лежащий напротив угла MNH, вдвое меньше гипотенузы, а значит искомый угол равен .
б) В правильном треугольнике AHB высота
Центр O сферы, вписанной в правильную шестиугольную пирамиду, лежит на её высоте MH, точка K касания сферы и боковой грани AMB лежит на отрезке Треугольники MOK и подобны, поэтому
где r — радиус сферы.
Площадь сферы
Ответ:
Если треугольники подобны, то в пропорциональном отношении относятся стороны двух треугольников, а не стороны одного между собой. a не
Эта ошибка во всех подобных задачах
Несложное упражнение, позволит вам получить из того соотношения, которое вы приводите, то, которое вы отрицаете. Это покажет вам, что ошибка не в задаче, а в восприятии вами окружающей действительности, которая гораздо богаче, чем вам кажется.
Радиус основания конуса равен 6, а его высота равна 8. Плоскость сечения содержит вершину конуса и хорду основания, длина которой равна 4.
а) Докажите, что сечение является равнобедренным остроугольным треугольником.
б) Найдите расстояние от центра основания конуса до плоскости сечения.
а) Сечение конуса плоскостью, содержащей его вершину S и хорду AB = 4, — треугольник ASB.
Две стороны сечения это образующие конуса. Они равны, поэтому треугольник SAB равнобедренный. В равных прямоугольных треугольниках SOA и SOB, где O — центр основания конуса, OA = OB = 6, SO = 8, откуда
Тогда в треугольнике SAB угол S наименьший (так как лежит против меньшей стороны), а следовательно, острый. Два других угла равны между собой, поэтому тоже острые. Таким образом, треугольник SAB остроугольный.
б) Пусть SH — высота и медиана равнобедренного треугольника ASB, Тогда отрезок OH — высота и медиана равнобедренного треугольника AOB,
Прямые SH и OH перпендикулярны прямой AB, поэтому плоскость SOH перпендикулярна плоскости ASB. Следовательно, расстояние от точки O до плоскости ASB равно высоте OM прямоугольного треугольника SOH, проведённой к гипотенузе:
Ответ:
Радиус основания конуса равен 5, а его высота равна 12. Плоскость сечения содержит вершину конуса и хорду основания, длина которой равна 6.
а) Докажите, что сечение — равнобедренный остроугольный треугольник.
б) Найдите расстояние от центра основания конуса до плоскости сечения.
а) Сечение конуса плоскостью, содержащей его вершину S и хорду — треугольник ASB. Две стороны сечения это образующие конуса. Они равны, поэтому треугольник SAB равнобедренный. В равных прямоугольных треугольниках SOA и SOB, где О — центр основания конуса, откуда
Тогда в треугольнике SAB угол S наименьший (так как лежит против меньшей стороны), а следовательно, острый. Два других угла равны между собой, поэтому тоже острые. Таким образом, треугольник SAB остроугольный.
б) Пусть SH — высота и медиана равнобедренного треугольника ASB, Тогда отрезок ОН — высота и медиана равнобедренного треугольника AOB,
Прямые SH и ОН перпендикулярны прямой AB, поэтому плоскость SOH перпендикулярна плоскости ASB. Следовательно, расстояние от точки О до плоскости ASB равно высоте ОМ прямоугольного треугольника SOH, проведенной к гипотенузе:
Ответ:
🌟 Видео
Правильная шестиугольная пирамида: принципы построение, решение задачСкачать
39 Правильная шестиугольная пирамидаСкачать
10 класс — Решение задач на правильную пирамидуСкачать
11 класс, 26 урок, Сфера, вписанная в коническую поверхностьСкачать
10 класс, 33 урок, Правильная пирамидаСкачать
ЕГЭ 2022 математика задача 4 вариант 2Скачать
Правильная пирамида № 258Скачать
ЕГЭ по математике - Шар в пирамидеСкачать
ЕГЭ Задание 14 Пирамида вписана в сферуСкачать
🔴 Стороны основания правильной шестиугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать
11 класс. Геометрия. Объём пирамиды. 28.04.2020.Скачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Стереометрия Боковое ребро правильной шестиугольной пирамидыСкачать