Окружность описанная вокруг прямоугольного треугольника свойства

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Окружность описанная вокруг прямоугольного треугольника свойстваСерединный перпендикуляр к отрезку
Окружность описанная вокруг прямоугольного треугольника свойстваОкружность описанная около треугольника
Окружность описанная вокруг прямоугольного треугольника свойстваСвойства описанной около треугольника окружности. Теорема синусов
Окружность описанная вокруг прямоугольного треугольника свойстваДоказательства теорем о свойствах описанной около треугольника окружности

Окружность описанная вокруг прямоугольного треугольника свойства

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Окружность описанная вокруг прямоугольного треугольника свойства

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Окружность описанная вокруг прямоугольного треугольника свойства

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Окружность описанная вокруг прямоугольного треугольника свойства

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Окружность описанная вокруг прямоугольного треугольника свойства

Окружность описанная вокруг прямоугольного треугольника свойства

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Окружность описанная вокруг прямоугольного треугольника свойства

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Окружность описанная вокруг прямоугольного треугольника свойства

Окружность описанная вокруг прямоугольного треугольника свойства

Полученное противоречие и завершает доказательство теоремы 2

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Окружность описанная вокруг прямоугольного треугольника свойства

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Окружность описанная вокруг прямоугольного треугольника свойства,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Окружность описанная вокруг прямоугольного треугольника свойства

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Окружность описанная вокруг прямоугольного треугольника свойстваВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаОкружность описанная вокруг прямоугольного треугольника свойстваОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиОкружность описанная вокруг прямоугольного треугольника свойстваЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиОкружность описанная вокруг прямоугольного треугольника свойстваЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовОкружность описанная вокруг прямоугольного треугольника свойства
Площадь треугольникаОкружность описанная вокруг прямоугольного треугольника свойства
Радиус описанной окружностиОкружность описанная вокруг прямоугольного треугольника свойства
Серединные перпендикуляры к сторонам треугольника
Окружность описанная вокруг прямоугольного треугольника свойства

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаОкружность описанная вокруг прямоугольного треугольника свойства

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиОкружность описанная вокруг прямоугольного треугольника свойства

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиОкружность описанная вокруг прямоугольного треугольника свойства

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиОкружность описанная вокруг прямоугольного треугольника свойства

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовОкружность описанная вокруг прямоугольного треугольника свойства

Для любого треугольника справедливы равенства (теорема синусов):

Окружность описанная вокруг прямоугольного треугольника свойства,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаОкружность описанная вокруг прямоугольного треугольника свойства

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиОкружность описанная вокруг прямоугольного треугольника свойства

Для любого треугольника справедливо равенство:

Окружность описанная вокруг прямоугольного треугольника свойства

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Окружность описанная вокруг прямоугольного треугольника свойства

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Окружность описанная вокруг прямоугольного треугольника свойства

Окружность описанная вокруг прямоугольного треугольника свойства.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Окружность описанная вокруг прямоугольного треугольника свойства

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Прямоугольный треугольник и описанная окружностьСкачать

Прямоугольный треугольник и описанная окружность

Please wait.

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

We are checking your browser. mathvox.ru

Видео:ТЕОРИЯ: ОКРУЖНОСТЬ ОПИСАННАЯ ОКОЛО ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА (Кратко)Скачать

ТЕОРИЯ: ОКРУЖНОСТЬ ОПИСАННАЯ ОКОЛО ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА (Кратко)

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6cfcae84efde169f • Your IP : 85.95.179.65 • Performance & security by Cloudflare

Видео:8 класс, 39 урок, Описанная окружностьСкачать

8 класс, 39 урок, Описанная окружность

Окружность описанная вокруг прямоугольного треугольника свойства

Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.

Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.

Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.

Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности

  • Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
  • В любой треугольник можно вписать окружность, и только одну.
  • Радиус вписанной в треугольник окружности равен отношению площади треугольника и его полупериметра: $$r = frac

    $$ , где S — площадь треугольника, а $$p =frac$$ — полупериметр треугольника.

Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.

Окружность называется описанной около треугольника, если она проходит через три его вершины.

Окружность, вписанная в прямоугольный треугольник

Окружность, описанная около прямоугольного треугольника

Четырехугольник, вписанный в окружность

Окружность, вписанная в ромб

📽️ Видео

Свойство окружности, описанной около равнобедренного треугольникаСкачать

Свойство окружности, описанной около равнобедренного треугольника

Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу.Скачать

Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу.

Окружность, описанная около прямоугольного треугольника | Геометрия 8-9 классыСкачать

Окружность, описанная около прямоугольного треугольника | Геометрия 8-9 классы

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 класс

СВОЙСТВА ВЫСОТ И ОРТОЦЕНТРАСкачать

СВОЙСТВА ВЫСОТ И ОРТОЦЕНТРА

Прямоугольный треугольник Полное досьеСкачать

Прямоугольный треугольник Полное досье

41 Задача о радиусе, окружности описанной около прямоугольного треугольникаСкачать

41 Задача о радиусе, окружности описанной около прямоугольного треугольника

7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать

7 класс, 35 урок, Некоторые свойства прямоугольных треугольников

Свойства прямоугольного треугольника. Практическая часть. 7 класс.Скачать

Свойства прямоугольного треугольника. Практическая часть.  7 класс.

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника
Поделиться или сохранить к себе: