Окружность описанная около правильного шестиугольника

Правильный шестиугольник: свойства, формулы, площадь

Знаете ли вы, как выглядит правильный шестиугольник?
Этот вопрос задан не случайно. Большинство учащихся 11 класса не знают на него ответа.

Правильный шестиугольник — такой, у которого все стороны равны и все углы тоже равны.

Железная гайка. Снежинка. Ячейка сот, в которых живут пчелы. Молекула бензола. Что общего у этих объектов? — То, что все они имеют правильную шестиугольную форму.

Окружность описанная около правильного шестиугольника

Многие школьники теряются, видя задачи на правильный шестиугольник, и считают, что для их решения нужны какие-то особые формулы. Так ли это?

Проведем диагонали правильного шестиугольника. Мы получили шесть равносторонних треугольников.
Окружность описанная около правильного шестиугольника

Мы знаем, что площадь правильного треугольника: .

Тогда площадь правильного шестиугольника — в шесть раз больше.

, где — сторона правильного шестиугольника.

Обратите внимание, что в правильном шестиугольнике расстояние от его центра до любой из вершин одинаково и равно стороне правильного шестиугольник.

Значит, радиус окружности, описанной вокруг правильного шестиугольника, равен его стороне.
Радиус окружности, вписанной в правильный шестиугольник, нетрудно найти.
Он равен .
Теперь вы легко решите любые задачи ЕГЭ, в которых фигурирует правильный шестиугольник.

Ты нашел то, что искал? Поделись с друзьями!

. Найдите радиус окружности, вписанной в правильный шестиугольник со стороной .

Окружность описанная около правильного шестиугольника

Радиус такой окружности равен .

. Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?

Окружность описанная около правильного шестиугольника

Мы знаем, что сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Правильный шестиугольник и его свойства

Определение

Выпуклый многоугольник называется правильным, если все его стороны равны и все его углы равны.

Замечание

Т.к. сумма всех углов (n) –угольника равна (180^circ(n-2)) , то каждый угол правильного (n) –угольника равен [alpha_n=dfracn cdot 180^circ]

Пример

Каждый угол правильного четырехугольника (т.е. квадрата) равен (dfrac 4cdot 180^circ=90^circ) ;

каждый угол правильного шестиугольника равен (dfrac6cdot 180^circ=120^circ) .

Теоремы

1. Около любого правильного многоугольника можно описать окружность, и притом только одну.

2. В любой правильный многоугольник можно вписать окружность, и притом только одну.

Следствия

1. Окружность, вписанная в правильный многоугольник, касается всех его сторон в серединах.

2. Центры вписанной и описанной окружности у правильного многоугольника совпадают.

Теорема

Если (a) – сторона правильного (n) –угольника, (R) и (r) – радиусы описанной и вписанной окружностей соответственно, то верны следующие формулы: [begin S&=dfrac n2ar\ a&=2Rcdot sindfracn\ r&=Rcdot cosdfracn end]

Окружность описанная около правильного шестиугольника

Свойства правильного шестиугольника

1. Сторона равна радиусу описанной окружности: (a=R) .

2. Радиус описанной окружности является биссектрисой угла правильного шестиугольника.

3. Все углы правильного шестиугольника равны (120^circ) .

4. Площадь правильного шестиугольника со стороной (a) равна (dfrac<3sqrt>a^2) .

5. Диагонали пересекаются в одной точке и делят его на 6 равносторонних треугольников, у которых высота равна радиусу (r) вписанной в правильный шестиугольник окружности.

6. Инвариантен относительно поворота плоскости на угол, кратный (60^circ) относительно центра описанной окружности (слово “инвариантный” означает, что при таких поворотах правильный шестиугольник перейдёт в себя, то есть такие повороты являются его симметриями).

Замечание

В общем случае правильный (n) -угольник инвариантен относительно поворота на угол (dfrac) .

Видео:110. Окружность, описанная около правильного многоугольникаСкачать

110. Окружность, описанная около правильного многоугольника

Шестиугольник описанный около окружности построение

Окружность описанная около правильного шестиугольникаТему многоугольников проходят в школьной программе, но не уделяют ей достаточного внимания. А между тем она интересна, и особенно это касается правильного шестиугольника или гексагона — ведь эту форму имеют многие природные объекты. К ним относятся пчелиные соты и многое другое. Эта форма очень хорошо применяется на практике.

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Определение и построение

Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.

Если вспомнить формулу суммы углов многоугольника

то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

Пошаговая инструкция будет выглядеть так:

  1. Окружность описанная около правильного шестиугольникачертится прямая линия и на ней ставится точка;
  2. из этой точки строится окружность (она является ее центром);
  3. из мест пересечения окружности с линией строятся еще две таких же, они должны сойтись в центре.
  4. после этого отрезками последовательно соединяются все точки на первой окружности.

При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

Видео:Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Окружность описанная около правильного шестиугольникаВокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

R=а.

Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

Ну а площадь этой окружности будет стандартная:

S=πR²

Вписанная окружность

Окружность описанная около правильного шестиугольникаЦентр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника. Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается. Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

Высота равностороннего треугольника вычисляется просто:

h²=а²-(а/2)²= а²3/4, h=а(√3)/2

А поскольку R=a и r=h, то получается, что

r=R(√3)/2.

Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

Ее площадь будет составлять:

S=3πa²/4,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а, или P=6R

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

S=3R²(√3)/2

Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

  1. Окружность описанная около правильного шестиугольникаУгол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
  2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
  3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
  4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.

Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

r₂=а/2

Площадь нового шестиугольника можно посчитать так:

Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

Видео:9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

От теории к практике

Окружность описанная около правильного шестиугольникаСвойства шестиугольника очень активно используются как в природе, так и в различных областях деятельности человека. В первую очередь это касается болтов и гаек — шляпки первых и вторые представляют собой ничто иное, как правильный шестигранник, если не брать в расчет фаски. Размер гаечных ключей соответствует диаметру вписанной окружности — то есть расстоянию между противоположными гранями.

Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

Выпускается и бетонная плитка для мощения.

Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.

Презентация была опубликована 5 лет назад пользователемГригорий Оськин

Похожие презентации

Видео:Окружность, описанная около правильного многоугольника | Геометрия 7-9 класс #105 | ИнфоурокСкачать

Окружность, описанная около правильного многоугольника | Геометрия 7-9 класс #105 | Инфоурок

Презентация на тему: » а) Для построения правильного шестиугольника можно воспользоваться тем, что а 6 = R. Построение. 1. Строим ω(О; R). О 2. Строим произвольную точку, принадлежащую.» — Транскрипт:

2 а) Для построения правильного шестиугольника можно воспользоваться тем, что а 6 = R. Построение. 1. Строим ω(О; R). О 2. Строим произвольную точку, принадлежащую окружности. 3. Из данной точки раствором циркуля равным R на окружности откладываем последовательно один за другим отрезки. (таким образом окружность разделиться на 6 равных частей). 4. Соединив последовательно данные точки, получим правильный шестиугольник. б) Для построения правильного шестиугольника можно воспользоваться другим способом (см. учебник стр.206, п. 117).

3 Построение. 1. Строим ω(О; R). О 2. Строим произвольную точку, принадлежащую окружности. 3. Из данной точки раствором циркуля равным R на окружности откладываем последовательно один за другим отрезки. (таким образом окружность разделиться на 6 равных частей). 4. Соединив последовательно через одну данные точки, получим правильный треугольник. Для построения правильного треугольника воспользуемся тем же алгоритмом, что и для построения правильного шестиугольника, только получив 6 точек на окружности, соединим их через одну.

4 Построение. 1. Строим ω(О; R). О 4. Соединив последовательно точки пересечения прямых с окружностью, получим правильный треугольник. Для построения правильного четырехугольника следует провести две перпендикулярные прямые, проходящие через центр окружности. Соединив последовательно точки пересечения прямых с окружностью, получим правильный четырехугольник (квадрат). 2. Проведем произвольную прямую, проходящую через центр окружности. 3. Проведем прямую, перпендикулярную данной и проходящую через центр окружности.

5 Построение. О 3. Соединив последовательно точки на окружности получим правильный восьмиугольник. Для построения правильного восьмиугольника сначала строим правильный четырехугольник ( по описанному алгоритму), а затем проводим две прямые через середины противолежащих сторон. При этом окружность окажется разделенной на 8 раваных частей. Соединив последовательно точки на окружности, получим правильный восьмиугольник. 1. Строим правильный четырехугольник, вписанный в окружность. 2. Проводим две прямые через середины сторон квадрата (вершины квадрата и точки пересечения прямых с окружностью делят окружность на 8 равных частей).

6 Рассмотренные способы построения правильных многоугольников дают возможность построить многоугольники, вписанные в окружность. Чтобы построить многоугольник, описанный около окружности, пользуются теми же способами, только на последнем этапе не соединяют полученные точки на окружности, а проводят через них касательные. Построим правильный шестиугольник, описанный около окружности. Построение. 1. Строим ω(О; R). О 2. Строим произвольную точку, принадлежащую окружности. 3. Из данной точки раствором циркуля равным R на окружности откладываем последовательно один за другим отрезки. 4. Через каждую полученную точку на окружности проводим касательные. Получим правильный шестиугольник.

Правильный описанный треугольник строят следующим образом (рисунок 38). Из центра заданной окружности радиуса R1 проводят окружность радиусом R2 = 2R1 и делят ее на три равные части. Точки деления А, В, С являются вершинами правильного треугольника, описанного около окружности радиуса R1.

Окружность описанная около правильного шестиугольника

Правильный описанный четырехугольник (квадрат) можно построить с помощью циркуля и линейки (рисунок 39). В заданной окружности проводят два взаимно перпендикулярных диаметра. Приняв точки пересечения диаметров с окружностью за центры, радиусом окружности R описывают дуги до взаимного их пересечения в точках А, В, С,D. Точки A, B, C, D и являются вершинами квадрата, описанного около данной окружности.

Окружность описанная около правильного шестиугольника

Для построения правильного описанного шестиугольника необходимо вначале построить вершины описанного квадрата указанным выше способом (рисунок 40, а). Одновременно с определением вершин квадрата заданную окружность радиуса R делят на шесть равных частей в точках 1, 2, 3, 4, 5, 6 и проводят вертикальные стороны квадрата. Проведя через точки деления окружности 2–5 и 3–6 прямые до пересечения их с вертикальными сторонами квадрата (рисунок 40, б), получают вершины А, В, D, Е описанного правильного шестиугольника.

Окружность описанная около правильного шестиугольника

Остальные вершины C и F определяют с помощью дуги окружности радиуса OA, которая проводится до пересечения ее с продолжением вертикального диаметра заданной окружности.
3 СОПРЯЖЕНИЯ

Дата добавления: 2014-11-06 ; Просмотров: 4403 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

🎬 Видео

Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

Задача 6 №27916 ЕГЭ по математике. Урок 133

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Правильные многоугольники. Урок 11. Геометрия 9 классСкачать

Правильные многоугольники. Урок 11. Геометрия 9 класс

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Разбираем стереометрию за 6 часов | ЕГЭ по математике | Эрик ЛегионСкачать

Разбираем стереометрию за 6 часов | ЕГЭ по математике | Эрик Легион

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Периметр правильного шестиугольника равен 150. Найдите диаметр описанной около него окружности (ЕГЭ)Скачать

Периметр правильного шестиугольника равен 150. Найдите диаметр описанной около него окружности (ЕГЭ)

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

Правильный многоугольник. Окружность, описанная около правильного многоугольника.Скачать

Правильный многоугольник. Окружность, описанная около правильного многоугольника.

КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ПРАВИЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | ГЕОМЕТРИЯ 9 классСкачать

КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ПРАВИЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | ГЕОМЕТРИЯ 9 класс

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны
Поделиться или сохранить к себе: