Окружность круг их элементы часть 1 фипи ответы

Задание 16 ОГЭ по математике — окружность, круг и их элементы

Прототипы заданий 16 ОГЭ по математике. Материал для подготовки к ОГЭ.

Для выполнения задания 16 необходимо уметь выполнять действия с геометрическими фигурами, координатами и векторами (окружность, круг и их элементы )

Подробнее узнать виды заданий на данной позиции в КИМах можно по кодификатору

Карточки для отработки задания 16 с ответами

→ скачать

Прототипы задания 16 ОГЭ по математике (окружности)

Опубликовано: Гармс Людмила Павловна

→ скачать

Материалы для отработки задания 16

Автор: Е. А. Ширяева

→ задания

Задания 16 — практика

Решение типовых задач № 16 на ОГЭ по математике

Видео:Задание 16 (часть 1) | ОГЭ 2024 Математика | Окружность, круг и их элементыСкачать

Задание 16 (часть 1) | ОГЭ 2024 Математика | Окружность, круг и их элементы

Окружность круг их элементы часть 1 фипи ответы

В окружности с центром О проведены две хорды АВ и CD так, что центральные углы АОВ и СОD равны. На эти хорды опущены перпендикуляры ОК и OL. Докажите, что ОК и OL равны.

Треугольники АОВ и СОD равны по двум сторонам и углу между ними (AO = BO = CO = DO как радиусы окружности, ∠AOB = ∠COD по условию). Следовательно, высоты OK и OL равны как соответственные элементы равных треугольников.

Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что отрезки AB и IJ перпендикулярны.

Точка I равноудалена от A и B, поэтому она лежит на серединном перпендикуляре к отрезку AB. То же можно сказать и о J . Значит, IJ — серединный перпендикуляр к AB.

Задание 25 № 341422

Окружности с цен­тра­ми в точ­ках I и J пе­ре­се­ка­ют­ся в точ­ках A и B, причём точки I и J лежат по одну сто­ро­ну от пря­мой AB. Докажите, что от­рез­ки AB и IJ перпендикулярны.

Решение: IA и IB — радиусы окружности с центром в точке I => IA = IB => треугольник IAB — равнобедренный.

Проведем медиану IJ к стороне AB. Т.к. треугольник IAB — равнобедренный, то IJ также является высотой, проведённой AB => AB и IJ перпендикулярны, что и требовалось доказать.

В окружности с центром O проведены две равные хорды Окружность круг их элементы часть 1 фипи ответыи MN. На эти хорды опущены перпендикуляры OH и OS. Докажите, что OH и OS равны.

Проведем ОK, ON, OL, OM — радиусы. Треугольники KOL и MON равны по трем сторонам, тогда высоты OH и OS также равны как элементы равных треугольников. Что и требовалось доказать.

В окружности через середину O хорды AC проведена хорда BD так, что дуги AB и CD равны. Докажите, что O — середина хорды BD.

Вписанные углы ADB, CBD , ACB и DAC опираются на равные дуги, значит, они равны.

Получаем, что треугольники СOВ и AOD подобны по двум углам; их коэффициент подобия равен AO:OC. Поскольку AO = OC , эти треугольники равны, следовательно, BO = OD.

Окружности с центрами в точках O1 и O2 не имеют общих точек, и ни одна из них не лежит внутри другой. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении m:n. Докажите, что диаметры этих окружностей относятся как m:n.

Проведём построения и введём обозначения, как показано на рисунке. Пусть Окружность круг их элементы часть 1 фипи ответыРассмотрим треугольники Окружность круг их элементы часть 1 фипи ответыи Окружность круг их элементы часть 1 фипи ответыони прямоугольные, углы Окружность круг их элементы часть 1 фипи ответыи Окружность круг их элементы часть 1 фипи ответыравны как вертикальные, следовательно, треугольники подобны, откуда Окружность круг их элементы часть 1 фипи ответы

Видео:Задание 16 ОГЭ 2023 математика | Окружность, круг и их элементыСкачать

Задание 16 ОГЭ 2023 математика | Окружность, круг и их элементы

Задание №17 ОГЭ по математике

Видео:Урок 7. Окружность, круг и их элементы. ОГЭ. Вебинар |МатематикаСкачать

Урок 7. Окружность, круг и их элементы. ОГЭ. Вебинар |Математика

Окружность, круг и их элементы

В 17 задании ОГЭ по математике необходимо решить простую задачу по геометрии. Для успешного решения необходимо обладать базовыми знаниями по геометрии вообще, так как сложно выделить какую-то одну тему, по которой даны задания. Это относится ко всему модулю геометрии. Я рекомендую повторить понятия центральные и вписанные углы, свойства касательных к окружности, взаимосвязь между радиусом описанной или вписанной окружности в геометрические фигуры — в первую очередь прямоугольный треугольник и квадрат.

По спецификации ОГЭ здесь могут встретиться задания, связанные с необходимостью нахождения длин, углов и площадей.

Ответом в задании 17 является целое число или конечная десятичная дробь.

Теория к заданию №17

Несмотря на то, что в задании №17 могут потребоваться любые знания по геометрии, в данном разделе мы разберем теорию по теме «окружность».

Начнем рассмотрение с понятия вписанная окружность:

  1. Центр окружности, вписанной в треугольник, лежит на пересечении биссектрис треугольника.
  2. Если окружность вписана в произвольный четырехугольник, тогда попарные суммы противолежащих сторон равны между собой: a + b = c + d

Окружность круг их элементы часть 1 фипи ответы

Длинна окружности и площадь:

Окружность круг их элементы часть 1 фипи ответы

Касательная и секущая:

  • Касательная – прямая, имеющая с окружностью одну общую точку.
  • Секущая – прямая, имеющая с окружностью две общие точки.

Окружность круг их элементы часть 1 фипи ответы

Описанная окружность и её свойства:

  1. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его трем сторонам.
  2. Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы.
  3. Около трапеции можно описать окружность только тогда, когда трапеция равнобочная.
  4. Если окружность описана около произвольного четырехугольника, тогда попарные суммы противолежащих углов равны между собой.

Окружность круг их элементы часть 1 фипи ответы

Хорда – отрезок, соединяющий две точки окружности.

  • Диаметр, делящий хорду пополам, перпендикулярен хорде.
  • В окружности равные хорды равноудалены от центра окружности.
  • Отрезки пересекающихся хорд связаны равенством:

Окружность круг их элементы часть 1 фипи ответы

Центральный и вписанный углы:

Окружность круг их элементы часть 1 фипи ответы

Ниже я разобрал три различных примера 10 задания. Если у вас остались пожелания, или вы хотите разобрать задачу, которой здесь нет, напишите об этом в комментарии.

Разбор типовых вариантов заданий №17 ОГЭ по математике

Первый вариант задания

Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.

Окружность круг их элементы часть 1 фипи ответы

Решение:

Внимательно посмотрим на рисунок. Угол ABC опирается на дугу ADC, а угол CAD — на дугу DC. Угол, который нам необходимо найти — ABD, опирается на дугу AD — которая является частью дуги ADC за вычетом дуги DC. Значит, угол ABD равен разности углов ABC и CAD:

∠ABD = 92 — 60 = 32

Второй вариант задания

Касательные в точках A и B к окружности с центром O пересекаются под углом 2º. Найдите угол ABO. Ответ дайте в градусах.

Окружность круг их элементы часть 1 фипи ответы

Решение:

Во-первых, касательные равны между собой по длине, а значит треугольник с основанием AB равнобедренный. Угол при вершине этого треугольника равен 2 градуса по условию, значит углы при основании равны:

Во-вторых, касательные перпендикулярны радиусу, то есть угол между ними и радиусом равен 90 градусов.

Заметим, что угол ABO, который необходимо найти, является частью угла между касательной и радиусом, а именно за вычетом угла, который мы нашли в первом пункте. Значит, этот угол равен:

Третий вариант задания

В треугольнике ABC известно, что AC = 16, BC = 12, угол C равен 90º. Найдите радиус описанной около этого треугольника окружности.

Окружность круг их элементы часть 1 фипи ответы

Решение:

Для решения необходимо вспомнить, что центр описанной около прямоугольного треугольника окружности расположен в середине гипотенузы. То есть гипотенуза является диаметром, а её половина — радиусом.

По теореме Пифагора найдем гипотенузу AB:

AB² = BC² + AC² = 12² + 16² = 144 + 256 = 400

Гипотенуза равна 20, значит радиус — 10.

Демонстрационный вариант ОГЭ 2019

Найдите длину хорды окружности радиусом 13 см, если расстояние от центра окружности до хорды равно 5 см. Ответ дайте в см.

Окружность круг их элементы часть 1 фипи ответы

Решение:

Для решения данной задачи необходимо провести радиус окружности к точке начала хорды:

Окружность круг их элементы часть 1 фипи ответы

Получаем прямоугольный треугольник, где гипотенуза c — радиус и равна 13 см, b — расстояние до хорды — 5 см. По теореме Пифагора находим катет a:

a² = c² — b² = 13² — 5² = 169 — 25 = 144

Но а — лишь половина хорды, поэтому вся хорда равна 2 • а = 24

Четвертый вариант задания

Центр окружности, описанной около треугольника АВС, лежит на стороне АВ. Радиус окружности равен 10. Найдите ВС, если АС=16.

Окружность круг их элементы часть 1 фипи ответы

Решение:

Сторона АВ треуг-ка АСВ является диаметром окружности. Это означает, что угол АСВ опирается на диаметр. Тогда угол АСВ равен 90 0 , и, следовательно, ∆АСВ прямоугольный.

Если ∆АСВ прямоугольный, то для нахождения одной из его сторон можно применить т.Пифагора. По т.Пифагора

АС 2 +ВС 2 =АВ 2 (1)

По условию АС=16, радиус окружности R=10. Если R=10, то АВ=2R=2·10=20.

Тогда из (1) получим:

Окружность круг их элементы часть 1 фипи ответы

Пятый вариант задания

Треугольник АВС вписан в окружность с центром в точке О. Найдите угол АСВ, если угол АОВ равен 113 0 . Ответ дайте в градусах.

Окружность круг их элементы часть 1 фипи ответы

Решение:

Поскольку вершина О угла АОВ лежит в центре окружности, значит, этот угол центральный. А если так, то он равен величине дуги АВ. Т.е. ᴗАВ=113 0 .

Угол АСВ является вписанным. Следовательно, его величина равна половине дуги, на которую он опирается. Из рисунка видно, что оба угла (АОВ и АСВ) опираются на одну и ту же дугу. Т.к. ᴗАВ=113 0 , то угол АСВ равен

🌟 Видео

Окружность. Круг. 5 класс.Скачать

Окружность. Круг. 5 класс.

Задание 16 (часть 2) | ОГЭ 2024 Математика | Окружность, круг и их элементыСкачать

Задание 16 (часть 2) | ОГЭ 2024 Математика | Окружность, круг и их элементы

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"

Задание 16.Окружность, круг и их элементы. Часть 1Скачать

Задание 16.Окружность, круг и их элементы. Часть 1

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

ОГЭ по математике 2019. Задание 17. Окружность, круг и их элементы. Теория+задачи (часть 1)Скачать

ОГЭ по математике 2019. Задание 17. Окружность, круг и их элементы. Теория+задачи (часть 1)

Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой РепетиторСкачать

Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой Репетитор

Задание №17 ОГЭ. Окружность, круг и их элементы.Скачать

Задание №17 ОГЭ. Окружность, круг и их элементы.

ЕГЭ. Математика. Окружность, круг и их элементы. ПрактикаСкачать

ЕГЭ. Математика. Окружность, круг и их элементы. Практика

Задание 16 (часть 3) | ОГЭ 2024 Математика | Окружность, круг и их элементыСкачать

Задание 16 (часть 3) | ОГЭ 2024 Математика | Окружность, круг и их элементы

Задание 6. Часть 3. Окружность, круг и их элементыСкачать

Задание 6. Часть 3. Окружность, круг и их элементы

ОГЭ Задание 16 Окружность, круг и их элементы (Часть 3)Скачать

ОГЭ Задание 16 Окружность, круг и их элементы (Часть 3)

ОГЭ Задание 16 Окружность, круг и их элементы (Часть 4)Скачать

ОГЭ Задание 16 Окружность, круг и их элементы (Часть 4)

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Математика. 3 класс. Окружность, круг и их элементы /24.11.2020/Скачать

Математика. 3 класс. Окружность, круг и их элементы /24.11.2020/

Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)Скачать

Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)
Поделиться или сохранить к себе: