
Благодаря позднейшим комментаторам и реставрациям, которыми много занимались в 16-18 вв., мы знаем и о содержании шести других геометрических работ Аполлония. В одной из них появляется так называемая «окружность Аполлония». В другой, изданной Виетом, работе «О касании» рассматривается следующая задача: построить циркулем и линейкой окружность, касающуюся трех данных окружностей. Решение самого Аполлония не сохранилось, но предпринятые многими авторами попытки его восстановления и, конечно, привлекательная формулировка, сделали эту задачу очень популярной. Мы предлагаем серию чертежей-заданий, которые через череду вспомогательных задач приводят к одному из элементарных, «школьных» решений.
Частные случаи
Нам будет удобно несколько расширить рамки задачи и допустить, наряду с обычными окружностями, «вырожденные» – точки (окружности нулевого радиуса) и прямые (окружности бесконечного радиуса). При этом появится несколько частных случаев, определяемых тем, какие именно фигуры (точки, прямые и окружности) даны, но, как мы увидим, к этим более простым случаям будет сводиться общий. Сначала посмотрим, как решается задача, когда все три данные окружности вырождаются в точки и прямые.
Три точки (Задача 01, 02). В этом случае задача состоит в том, чтобы описать окружность около треугольника с вершинами в трех данных точках. Этому учат едва ли не на первых уроках геометрии. Отметим, что и в случае, когда даны точки на одной прямой, эта задача имеет решение, ведь мы условились и прямую считать окружностью.
Три прямые (Задача 03, 04). В отличие от первого случая, здесь возможны несколько решений. Если прямые ограничивают треугольник, то одно из них дается его вписанной окружностью, а еще три – вневписанными (касающимися одной из сторон извне треугольника и продолжений двух других сторон). Если параллельны ровно две из трех прямых, то решений, очевидно, два, а если все три, то ни одного.
Две точки и прямая (Задача 05). Эту задачу можно решить с помощью «геометрических вычислений», т. е. алгебраическим методом. Пусть A и B – данные точки и пусть C – точка пересечения прямой AB с данной прямой l (случай AB || l рассмотрите самостоятельно). Если K – точка касания искомой окружности с прямой l, то по теореме о квадрате касательной должно выполняться равенство CK 2 = CA·CB. Это позволяет построить точку K, отложив на прямой l отрезок CK длины
| _____ |
| CK = √CA·CB |
Две прямые и точка (Задача 07). Допустим, что данные прямые пересекаются. Тогда задачу можно свести к предыдущей. Поскольку центр окружности, касающейся таких прямых, лежит на биссектрисе l одного из образованных ими углов, окружность симметрична относительно l, поэтому она проходит через точку B, симметричную данной точке A относительно l. Таким образом, нам известны две точки, A и B, лежащие на искомой окружности, и две прямые, которых она касается, а построение для этого случая (даже для одной прямой) было описано выше. Для полноты надо отдельно рассмотреть случаи, когда прямые параллельны и когда они пересекаются, но данная точка лежит на биссектрисе образованного ими угла (и совпадает с симметричной ей точкой B). Построение в этих случаях несложно и мы на нем не останавливаемся.
Последнюю задачу можно решать и непосредственно, методом гомотетии. В таком случае к ней можно было бы сводить предыдущую задачу о проведении окружности через две данные точки A и B, касающуюся данной прямой: искомая окружность обязана касаться и второй прямой, симметричной данной относительно серединного перпендикуляра к AB.
Прежде, чем двинуться дальше, остановимся на понятии степени точки относительно окружности и некоторых связанных с ним фактах, которые понадобятся нам еще не раз. Хотя это понятие в явном виде и не проходится в школе, по существу оно появляется в двух известных теоремах об окружности: теореме об отрезках пересекающихся хорд и теореме о квадрате касательной (ее другое название – теорема о секущей и касательной), которую мы уже использовали выше. Эти две теоремы можно свести в одно утверждение.
Пусть даны окружность и точка P. Произведение PA·PB, где A и B – точки, в которых прямая, проходящая через P, пересекает окружность, зависит только от точки P и окружности и не зависит от прямой.
Это произведение, взятое со знаком плюс для точек вне окружности и со знаком минус для точек внутри окружности, и называется степенью точки P относительно окружности. Можно сказать, что степень точки P – это скалярное произведение 


Из нее нетрудно вывести и теорему, в некотором смысле к ней обратную: если прямые AB и CD пересекаются в точке P и 
Вернемся к задаче Аполлония и рассмотрим случаи, когда две окружности вырождены, т. е. являются точками или прямыми, а третья – «нормальная».

Наше решение не работает, если прямые AB и CD окажутся параллельными. Это произойдет, если серединный перпендикуляр к AB содержит центр данной окружности. Легко понять, что в этом случае точками касания будут точки пересечения серединного перпендикуляра с окружностью.


Теперь можно продолжить рассмотрение различных вариантов задачи Аполлония.

Наконец, рассмотрим случаи, когда вырождается только одна окружность.
Точка и две окружности (Задача 09. 2). Пусть требуется построить окружность, проходящую через данную точку A и касающуюся двух данных окружностей c1 и c2 внешним образом. Пусть K1 и K2 – точки касания. Воспользуемся тем, что они лежат на одной прямой с внешним центром подобия Z данных окружностей. (Доказать это можно с помощью теоремы Менелая для треугольника OO1O2, образованного центрами окружностей: очевидно, что 
Отсюда вытекает следующее построение: проводим произвольную секущую ZL1L2, затем окружность через точки L1, L2 и A и находим X как точку пересечения этой окружности с прямой ZA, отличную от A. В итоге задача сводится к случаю, когда даны две точки (A и X) и окружность. В этом случае, как мы видели, имеется, вообще говоря, два решения. Одно из них – это окружность, касающаяся обеих данных внешним образом, второе – окружность, касающаяся обеих данных внутренним образом. Если выполнить аналогичное построение, взяв вместо внешнего центра подобия внутренний, мы получим еще два решения (c разноименным касанием).

Преобразование окружностей, которое мы здесь применили, так и называется расширением (фактически оно может оказаться и «сжатием»). Чтобы описать его, не рассматривая многочисленные частные случаи, зададим на окружностях и прямых направления, т. е., попросту говоря, нарисуем на них стрелки. При этом из каждой обычной окружности получатся две противоположно направленные. Две направленные окружности или окружность и прямую будем считать касающимися, если они имеют не только единственную общую точку, но и одинаковые направления в этой точке. Радиусу окружности припишем знак – плюс, если она ориентирована против часовой стрелки, и минус, если наоборот. При таком соглашении расширение окружности на величину l – это просто добавление l к радиусу (с учетом знаков), а для прямой – это сдвиг на |l| вправо от направления прямой при l>0 и влево при l 3 = 8 способами – и придерживаться сделанного выбора. Проследив всю цепочку построений, можно убедиться, что для каждого из этих способов имеется не более одной окружности заданной ориентации, касающейся трех данных «правильно», с соблюдением направлений. Поскольку ориентацию искомой окружности можно считать заданной раз и навсегда, скажем, против часовой стрелки, задача имеет не более восьми решений. Конечно, в каких-то случаях их может быть меньше.
Мы рассказали об «элементарном» решении задачи Аполлония, практически не использующем понятий, выходящих за рамки школьной программы. Существует и много других способов ее решения, из которых мы упомянем лишь об одном, с помощью удивительного преобразования плоскости, называемого инверсией.
Это преобразование как бы «выворачивает плоскость наизнанку», меняя местами внутренность и внешность некоторой окружности c. Его самое главное свойство состоит в том, что оно превращает окружности, проходящие через центр O окружности c в прямые и обратно, а окружности, не проходящие через центр, оставляет окружностями. Благодаря этому, фигуру из прямых и окружностей можно с помощью инверсии изменить самым радикальным образом. Например, если поместить центр O инверсии в точку пересечения двух окружностей, то она переведет их в пересекающиеся прямые, а любые две непересекающиеся окружности можно подходящей инверсией сделать концентрическими. Это значит, что задача Аполлония для любых трех окружностей сводится инверсией к случаю «две прямые и окружность», разобранному выше или к случаю, когда две данные окружности имеют общий центр, а значит диаметр искомой окружности известен – он равен ширине образованного ими кольца. Если же использовать инверсию в сочетании с расширением, то решение можно свести к совсем простым случаям. Например, с помощью расширения можно сделать какие-либо две из данных окружностей касающимися, тогда инверсия относительно точки касания переведет их в параллельные прямые. Можно также сжать одну из окружностей в точку, тогда инверсия относительно этой точки превратит искомую окружность в прямую и задача сведется к проведению общей касательной к образам двух других окружностей.
Видео:Интересная задача о трёх попарно касающихся окружностяхСкачать

Окружность, проходящая через точку и касающаяся двух данных окружностей
Задача имеет четыре действительных решения (рис. 2.11) и четыре мнимых.
Здесь также применяем свойства циклиды Дюпена. Задача сводится к предыдущей, когда мы имели дело с двумя точками.
В данной задаче для нахождения точек касания А 1 и А 2 строим три конуса (рис. 2.12): два из них касаются двух заданных сфер и проходят через данную точку О 3 , а третий конус является касательным к обеим данным сферам.
Затем, согласно приведенному в разделе 2.1 алгоритму, находим точки касания А 1 и А 2 с данными сферами плоскости, проходящей также и через точку О 3 . Три найденные точки задают касательную к данным сферам и проходящую через точку О 3 плоскость.
После этого определяем положение осей i и j циклиды Дюпена. Плоскость симметрии Д°, содержащая искомые центры очерковых окружностей, проходит через ось j перпендикулярно оси /. В этой плоскости находим центры очерковых окружностей как точки пересечения прямых Д° (см. рис. 2.10) с О 1 0 ю и O^Cf 2 . Сама теория построения представлена в разделе 2.1.
На рис. 2.12, так же как и в предыдущей задаче, получаем известный очерк циклиды Дюпена.
Как видим, пока что теория свойств циклиды Дюпена для всех рассмотренных вариантов задачи Аполлония работает безошибочно.
Видео:Планиметрия 15 | mathus.ru | Окружность, касающаяся двух других и их общей касательнойСкачать

Окружность, касающаяся трех прямых
Рассмотрим эту задачу как задачу Аполлония с окружностями бесконечно большого радиуса (рис. 2.13, а). По сути, в данном примере заданы три фронтально проецирующие плоскости: Г, X и А.
Здесь снова используем свойство 8 и его следствие. Касательные конусы для нахождения точек касания в этой задаче вырождаются в прямые а, Ь, с пересечения данных плоскостей. Эти прямые содержат и искомые точки «касания» трех данных плоскостей четвертой.
Только следует иметь ввиду не действительную плоскость касания, а несобственную.
Таким образом, первые три точки мы имеем. Для нахождения следующих трех точек, поступаем, как в работе [2]: строим дополнительные три «сферы», увеличивая или уменьшая их «радиус» на одну и ту же величину 5 (см. рис. 2.13). Эти «сферы» также имеют «касательные конусы», вырожденные в прямые, параллельные а, b и с. Проведя через соответствующие параллельные прямые плоскости, по сути являющиеся биссекторными, получим «ось» циклиды Дюпена (в данном примере она обозначена буквой О), выродившуюся в цилиндр вращения. Соединив точку О с «центрами» данных сфер, а по сути проведя из О перпендикуляры к прямым а, Ь, с, получим точки касания.
Следует отметить, что при таком задании «сфер», при разном условии касания мы получим четыре действительных цилиндра вращения (рис. 2.13, б) и четыре мнимых.
Таким образом, мы рассмотрели частный случай получения циклиды Дюпена, когда она вырождается в цилиндр вращения.
Если плоскости Г, X и А будут пересекаться в одной точке, мы получим циклиду Дюпена в виде конуса вращения.
Видео:10 класс, 11 урок, Числовая окружностьСкачать

Задача Аполлония
2.2 Задача Аполлония
Методом инверсии может быть решена в общем случае задача Аполлония о касании окружностей:
Построить окружность, касающуюся трех данных окружностей.
Эта задача впервые была решена известным греческим геометром Аполлонием Пергским в III в. до н. э. в сочинении, которое до нас не дошло, но о котором упоминают некоторые древние математики (например, Папп). Способ, с помощью которого решил эту задачу Аполлоний, неизвестен. Многие задачи из числа рассматриваемых в школьном курсе геометрии представляют частные или предельные случаи задачи Аполлония. Частные случаи возникают при специальном расположении данных окружностей, предельные – когда все или некоторые из данных окружностей вырождаются в точки (радиус окружностей неограниченно уменьшается) или прямые (радиус неограниченно возрастает).
Прежде, чем решить задачу Аполлония в общем случае, рассмотрим некоторые частные и предельные случаи.
Задача 1. Построить окружность, проходящую через три данные точки.
Задача 2. Построить окружность, касающуюся трех данных прямых. Решение этой задачи также общеизвестно. Она может иметь до четырех решений.
Задача 3. Построить окружность, проходящую через данную точку и касающуюся двух данных параллельных прямых.
Анализ. Пусть дана точка Р и и две параллельные прямые а и b. Обозначим расстояние между данными прямыми через d. Тогда радиус искомой окружности должен быть равен d/2. задача сводится к построению центра окружности, который должен удовлетворять двум условиям: 1) он должен быть одинаково удален от прямых а и b; 2) он должен отстоять от точки Р на расстоянии d/2. отсюда вытекает построение.
2. С Є АВ, АС = СВ;
3. с – прямая, С Є с, с ║а, с ║b;
6. щ1 (О1, О1Р) – искомая.
Доказательство. Окружность щ1 касается прямых а и b, так как расстояния ее центра О1 от этих прямых одинаковы и равны d/2. эта окружность проходит через точку Р по построению.
Исследование. Возможны три случая.
1. Точка р расположена между данными прямыми а и b. Указанный способ построения дает два решения: щ1 (О1, О1Р) и щ2 (О2, О2Р). Других решения нет, ибо если бы существовали три окружности, удовлетворяющие условиям задачи, то их центры О1, О2 и О3 должны были бы лежать на одной прямой с. С другой стороння, мы должны были бы иметь О1Р = О2Р = О3Р = АС, то есть точки О1, О2 и О3 должны были бы лежать на одной окружности (Р, АС), так что возникает противоречие.
2. Точка Р — на одной из прямых а или b. Задача имеет одно решение.
3. Точка Р – вне полосы, ограниченной прямыми а и b. Задача не имеет решений.
Задача 4. Построить окружность, проходящую через две данные точки и касающуюся данной прямой.
Эта задача может быть решена методом инверсии, если за центр инверсии принять одну из данных точек, а ее расстояние до данной прямой принять за радиус инверсии. Она может быть решена и без инверсии.
Задача 5. Построить окружность, касающуюся данной окружности и проходящую через две данные точки. Эта задача решена в предыдущем пункте в предположении, что данные точки расположены вне данной окружности. В других случаях решение аналогично или еще проще.
Задача 6. построить окружность, касающуюся трех данных окружностей, проходящих через одну общую точку Р.
Если принять общую точку трех данных окружностей г1, г2 и г3 за центр инверсии, то эти окружности преобразуются в три прямые. Таким образом, задача сводится к построению окружности, касающейся трех построенных прямых. Искомая окружность – образ этой окружности в данной инверсии.
Переходим к решению задачи Аполлония в общем случае, причем остановимся лишь на основных моментах этого решения, не вникая в отдельные его детали.
Решение, которое мы дадим, основано на предварительном решении двух вспомогательных задач (представляющих предельный и частный случаи общей задачи).
1-я вспомогательная задача: построить окружность, касающуюся двух параллельных прямых и данной окружности.
Задача обычно решается методом геометрических мест. Пусть а и b – данные прямые, г (О, r) – данная окружность (рис. 39).
Из произвольной точки А на прямой а опускаем перпендикуляр АВ на прямую b. Через середину С отрезка АВ проводим прямую с параллельно а. строим окружность д (О, r + АС) (или радиуса │r — АС│). Отмечаем точку пересечения этой окружности с прямой с; это и будет центр искомой окружности.
Эта задача может иметь до четырех различных решений.
2-я вспомогательная задача: построить окружность, касающуюся трех данных окружностей, если две из них взаимно касаются.
Эта задача решается методом инверсии. Пусть г1, г2 и г3 – данные окружности, причем г1 и г2 касаются в точке Т (рис. 40).
Примем точку Т за центр инверсии, а за радиус инверсии – произвольный отрезок (удобно избрать его так, чтобы базисная окружность щ пересекла окружности г1 и г2). При инверсии окружности г1 и г2 преобразуются в пару параллельных прямых гґ1 и гґ2, а окружность г3 – в некоторую окружность (или прямую) гґ3. построить окружность гґ, касающуюся прямых гґ1 и гґ2 и линии гґ3, мы умеем (см. 1-ю вспомогательную задачу). При инверсии этой окружности она преобразуется в окружность (или прямую) г, которая будет касаться трех данных окружностей г1, г2 и г3.
Решение задачи Аполлония в общем случае сводится к этой 2-й вспомогательной задаче. Мы воспользуемся для этого приемом, иногда называемым «методом расширения».
Для определенности рассмотрим тот случай, когда каждая из трех данных окружностей расположена вне двух других (рис. 41).
В других случаях решение проводится аналогично.
Пусть г1 (О1, r1), г2 (О2, r2) и г3 (О3, r3) –данные окружности. Пусть, далее, прямая О1О2 пересекает окружность г1 в точках А1 и Аґ1, а окружность г2 – в точках А2 и Аґ2. из четырех отрезков А1А2, Аґ1Аґ2, Аґ1А2 и А1Аґ2 выберем кратчайший. Пусть это будет отрезок А1А2. обозначим через Т его середину. Увеличим радиусы всех данных окружностей на отрезок А1Т, то есть построим окружности гґ1 (О1, r1 + А1Т), гґ2 (О2, r2 + А1Т), гґ3 (О3, r3 + А1Т). из них окружности г1 и гґ2 касаются в точке Т. мы можем теперь построить окружность гґ, касающуюся трех окружностей гґ1, гґ2 и гґ3 (см. 2-ю вспомогательную задачу). Обозначим центр окружности гґ через О, а радиус — через rґ. Если затем построить концентрическую ей окружность г (О, rґ + А1Т), то эта последняя будет касаться трех данных окружностей.
Число всех возможных решений задачи Аполлония зависит от взаимного расположения данных окружностей. Приведем без доказательства несколько примеров.
1. Если окружность г2 расположена внутри окружности г1, а окружность г3 вне окружности г1 (рис. 42), то задача Аполлония вовсе не имеет решения. Это относится в частности, и к случаю, когда все три данные окружности концентрические.
2. Если две окружности г1 и г2 касаются, а третья окружность г3 пересекает их в точке их касания, то задача Аполлония имеет два решения Г1 и Г2 (рис. 43).
3. Если каждая из данных окружностей расположена вне двух других, причем касательная к каждым двум из данных окружностей не имеет обшей точки с третей окружностью, то задача имеет восемь решений (рис. 44).
4. Если три данные окружности попарно касаются в одной точке, то можно провести бесконечно много окружностей, касающихся каждой из данных (рис. 45).
Полное исследование показывает, что если задача Аполлония имеет лишь конечное число решений, то их не более восьми.
Рассмотрим некоторые задачи, для решения которых используется понятие и метод инверсии.
Задача 1. Дан квадрат, две вершины которого лежат на окружности инверсии, а третья – в центре инверсии. Построить фигуру, ему инверсную.
Анализ. Пусть щ (О, R) – базисная окружность, ОАВС – данный квадрат. Точка А Є щ, точка С Є щ. При инверсии точка А переходит в точку Аґ, точка С – в Сґ, точка В – в Вґ, а ОС переходит в прямую ОL∞, ОА – в ОК∞, АВ переходит в дугу m, СВ переходит в дугу n. Таким образом, фигура определяется как СґnВґmАґВ, которая является инверсией квадрата ОАВС.
Построение. (рис. 1).
1. щ (О, R) базисная окружность;
2. В → Вґ, А ≡ Аґ, С ≡ Сґ;
5. СґnВґmАґВ – искомая фигура.
Доказательство. Доказательство следует из анализа и построения.
Исследование. Задача всегда имеет решение и притом единственное.
Задача 2. Дан квадрат, однв вершина которого совпадает с центром инверсии, а противоположная вершина лежит на окружности инверсии. Построить фигуру, ему инверсную.
Анализ. Пусть щ (О, R) – базисная окружность, ОАВС – данный квадрат, В Є щ. При инверсии точка В переходит в точку Вґ, В ≡ Вґ, точка А переходит в точку Аґ, Аґ 


Построение. (рис. 2)
1. щ (О, R) – базисная окружность;
2. В ≡ Вґ, А ≡ Аґ, С ≡ Сґ, В 


7. К∞АґmВґnСґL∞ — искомая фигура.
Доказательство. Доказательство следует из анализа.
Исследование. Задача всегда имеет решение и притом единственное.
Задача 3. Построить фигуру, инверсную окружности, концентрической базисной.
Анализ. Пусть щ (О, Р) – базисная окружность инверсии, щ1 (О1, R1) – данная окружность. Так как окружность щ (О, R1) не проходит через центр инверсии, то преобразуется в окружность. Для построения искомой окружности надо найти точки Аґ и Вґ — инверсные точкам А и В, где А и В – диаметрально противоположные точки, а отрезок АґВґ — являются диаметром искомой окружности.
🎦 Видео
Окружность касается! И ВСЕХ КАСАЕТСЯ!Скачать

#59. Олимпиадная задача о касательной к окружности!Скачать

Так периметр еще никто не находил! Задача про треугольник и окружностиСкачать

Вневписанная окружность | Теоремы об окружностях - 3Скачать

Всё про углы в окружности. Геометрия | МатематикаСкачать

КАСАЮЩИЕСЯ ОКРУЖНОСТИ. # ЕГЭ 2023Скачать

Планиметрия 27 | mathus.ru | окружность, касающаяся основания трапеции и вписанной в нее окружностиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Окружность касается катетовСкачать

Задачи с касательными к окружности. Пример 3. | Окружность | ГеометрияСкачать

Геометрия Каждая из трех равных окружностей радиуса r касается двух других. Найти площадьСкачать

Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать

Вся геометрия треугольника в одной задаче. Планиметрия. ЕГЭ 2023 математика задача 16Скачать

Планиметрия 22 | mathus.ru | Окружность, касающаяся данной окружности и ее хордыСкачать

ОКРУЖНОСТЬ КАСАЕТСЯ КАТЕТОВ, ЖЕСТЬ, ПРОСТО!Скачать

Задача №16. Пересекающиеся и касающиеся окружности.Скачать














