Около окружности радиус которой равен 10 описана равнобедренная трапеция

Найдите площадь равнобедренной трапеции, описанной около окружности радиуса 4 см, если известно, что боковая сторона трапеции равна 10 см

Видео:Около трапеции описана окружностьСкачать

Около трапеции описана окружность

Ваш ответ

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

решение вопроса

Видео:Геометрия Около окружности радиуса √2 описана равнобедренная трапеция, у которой одно основаниеСкачать

Геометрия Около окружности радиуса √2 описана равнобедренная трапеция, у которой одно основание

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,049
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:2116 около окружности описана трапеция периметр которой равен 120 Найдите её среднюю линиюСкачать

2116 около окружности описана трапеция периметр которой равен 120 Найдите её среднюю линию

Материалы для подготовки к ГИА «Задачи по теме «Трапеция и ее свойства »

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов

Сертификат и скидка на обучение каждому участнику

Около окружности радиус которой равен 10 описана равнобедренная трапецияМУНИЦИПАЛЬНОЕ АВТОНОМНОЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 96

Готовимся к ГИА

Задачи по теме «Трапеция и ее свойства »

Автор: Кошелева Е.В.,

Решите задачи, используя следующие свойства

1)Высота равнобедренной трапеции, в которую можно вписать окружность, является средним геометрическим её оснований h 2 = a b

В равнобедренную трапецию вписана окружность радиуса 10 . Верхнее основание трапеции в два раза меньше её высоты. Найдите площадь трапеции.

Около круга радиуса 2 описана равнобедренная трапеция, периметр которой равен 20. Найти площадь этой трапеции.

Основания описанной около окружности равнобедренной трапеции равны 2 и 18. Найдите площадь трапеции.

Основания равнобедренной трапеции относятся как 1 : 5, а радиус окружности, вписанной в эту трапецию, равен 7,5 см. Найдите стороны трапеции

Ответ: Около окружности радиус которой равен 10 описана равнобедренная трапеция

Около окружности с диаметром 15 описана равнобедренная трапеция с боковой стороной, равной 17. Найдите основания трапеции.

В равнобокую трапецию с верхним основанием, равным 1, вписана окружность единичного радиуса. Найти нижнее основание трапеции.

В равнобокую трапецию вписана окружность радиуса 6 см, точка касания делит боковую сторону на отрезки, разность между которыми равна 5 см. Найти среднюю линию трапеции.

Средняя линия равнобедренной трапеции равна 5 см. Известно, что средняя линия делит площадь трапеции на две части, площади которых относятся как 7:13. Найти высоту трапеции, если известно, что в неё можно вписать окружность.

В равнобедреннуютрапецию вписан круг. Боковая сторона делится точкой касания на отрезки длиной 9 и 16. Определить площадь трапеции .

Около окружности, радиус которой равен 10, описана равнобедренная трапеция. Расстояния между точками касания окружности с боковыми сторонами трапеции12. Найдите боковую сторону трапеции.

Ответ: Около окружности радиус которой равен 10 описана равнобедренная трапеция

Средняя линия равнобокой трапеции, описанной около круга, равна 68. Найти радиус этого круга, если нижнее основание трапеции больше верхнего на 64.

В равнобедренную трапецию, большее основание которой равно 36, вписана окружность радиуса 12. Найдите наименьшее основание трапеции

2 ) Если в равнобедренную трапецию вписана окружность, то её боковая сторона равна средней линии

1.Около круга радиуса 2 см описана равнобедренная тра пеция с острым углом 30°. Найти длину средней линии трапеции. Ответ: 8

Найти боковую сторону равнобокой трапеции, описанной около круга, если острый угол при основании трапеции равен Около окружности радиус которой равен 10 описана равнобедренная трапеция, а площадь трапеции 288.

Около окружности описана равнобедренная трапеция, средняя линия которой равна 5, а синус острого угла при основании равен 0,8. Найдите площадь трапеции.

Около окружности описана трапеция, площадь которой равна 20, а синусы углов при основании равны 0,8. Найти длину средней линии трапеции.

Равнобедренная трапеция описана около окружности радиуса 5. Боковая сторона равна 12. Чему равна площадь трапеции?

Равнобокая трапеция с площадью 40 и боковым ребром 8 такова, что в неё можно вписать окружность. Найти радиус окружности.

Площадь равнобедренной трапеции, описанной около окружности, равна 8 . Найдите среднюю линию трапеции, если острый угол при её основании равен 30°.

В равнобедренную трапецию вписана окружность радиуса 4. Боковая сторона равна 9. Найти площадь трапеции.

В равнобедренной трапеции боковая сторона равна средней линии, а периметр равен 48. Найдите длину боковой стороны.

В равнобедренную трапецию, один из углов которой равен 60°, а площадь равна Около окружности радиус которой равен 10 описана равнобедренная трапеция, вписана окружность. Найдите радиус этой окружности.

3)Площадь равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна квадрату её высоты: S = h 2 .

Диагонали равнобедренной трапеции взаимно перпендикулярны, а длина её средней линии равна 9. Найдите длину отрезка, соединяющего середины оснований трапеции.

В равнобедренной трапеции средняя линия равна 5 , а диагонали взаимно перпендикулярны. Найдите площадь этой трапеции

Найти площадь равнобедренной трапеции, основания которой 12 и 34, а диагонали перпендикулярны

В равнобедреннойтрапеции диагонали взаимно перпендикулярны. Найдите среднюю линию трапеции , если её площадь равна 36.

Диагонали равнобедренной трапеции взаимно перпендикулярны, а её площадь равна 4. Найти высоту трапеции.

Найти периметр равнобедренной трапеции, боковая сторона которой 13, высота 12, а диагонали взаимно перпендикулярны.

Площадь равнобедренной трапеции равна 256, а диагонали взаимно перпендикулярны. Найдите среднюю линию трапеции.

В равнобедренной трапеции ABCD (BC || AD) диагонали AC и BD взаимно перпендикулярны, ВС = 6 см, AD = 20 см. Найти длину отрезка, соединяющего середины оснований трапеции.

В равнобедренной трапеции ABCD ( AD || BC ) Диагонали взаимно перпендикулярны, высота трапеции равна 12 см. Расстояние от вершины А до прямой CD в три раза больше, чем расстояние от вершины В до этой прямой. Найдите основания трапеции.

Ответ: 18 см и 6см

4)В равнобедренной трапеции проекция диагонали на большее основание равна средней линии трапеции.

Найти диагональ равнобедренной трапеции, если её площадь равна Около окружности радиус которой равен 10 описана равнобедренная трапеция, а средняя линия равна 2

Найти площадь равнобедренной трапеции, если её высота равна 4, а тангенс угла между диагональю и основанием равен Около окружности радиус которой равен 10 описана равнобедренная трапеция.

Найти площадь равнобедренной трапеции, если её диагональ, равная 13, образует с основанием угол, косинус которого равен Около окружности радиус которой равен 10 описана равнобедренная трапеция.

Большее основание равнобедренной трапеции равно 8, боковая сторона 9, а диагональ 11. Найти меньшее основание.

Меньшее основание равнобедренной трапеции равно 10, боковая сторона 18, а диагональ 22. Найти большее основание трапеции.

Найдите площадь равнобедренной трапеции, если её средняя линия равна 6, а тангенс угла между диагональю и основанием равен 1,5.

Найдите площадь равнобедренной трапеции, если её диагональ равна Около окружности радиус которой равен 10 описана равнобедренная трапеция, а средняя линия равна

Средняя линия равнобедренной трапеции равна 4. Площадь трапеции равна 8. Найти тангенс угла между диагональю и основанием трапеции

В равнобедренной трапеции диагональ, равная 4 см, составляет с основанием угол 60°. Найдите среднюю линию трапеции.

Боковая сторона равнобедренной трапеции равна Около окружности радиус которой равен 10 описана равнобедренная трапеция, а основания равны 4 и 5. Найдите её диагональ

В равнобокой трапеции основания 6 и 10. Диагональ равна 10. Найти площадь трапеции

Площадь равнобедренной трапеции равна 32. Котангенс угла между диагоналями трапеции и её основанием равен 2. Найдите высоту трапеции.

В равнобедренной трапеции диагональ равна 13 см, а средняя линия – 12 см. Найдите высоту трапеции

Видео:№527. В равнобедренной трапеции диагональ равна 10 см, а высота равна 6 см. Найдите площадь трапецииСкачать

№527. В равнобедренной трапеции диагональ равна 10 см, а высота равна 6 см. Найдите площадь трапеции

Около окружности радиус которой равен 10 описана равнобедренная трапеция

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4.^$$. Диагонали трапеции разбивают её на четыре треугольника с общей вершиной (рис. 20). Площади треугольников, прилежащих к боковым сторонам, равны, а треугольники прилежащие к основаниям — подобны.

$$ 4.^$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

Около окружности радиус которой равен 10 описана равнобедренная трапеция

$$ 4.^$$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4.^$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4.^$$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4.^$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

(рис. 25, основания равны `a` и `b`, `a>b`).

Около окружности радиус которой равен 10 описана равнобедренная трапеция

$$ 4.^$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4.^$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

Около окружности радиус которой равен 10 описана равнобедренная трапеция

$$ 4.^$$.В равнобокой трапеции `d^2=c^2+ab`, где `d` — диагональ, `c` — боковая сторона, `a` и `b` основания.

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.^$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4.^$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Докажем, например, утверждение $$ 4.^$$ .

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK«||«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

`d^2=c^2+ab`.

Около окружности радиус которой равен 10 описана равнобедренная трапеция

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

`AC=6`, `BM=MC`, `AN=ND`, `MN=5` (рис. 30а). Во всякой трапеции середины оснований и точка пересечения диагоналей лежат на од-ной прямой (свойство $$ 4.^$$). Треугольник `BOC` прямоугольный (по условию `AC_|_BD`), `OM` — его медиана, проведённая из вершины прямого угла, она равна половине гипотенузы: `OM=1/2BC`. Аналогично устанавливается `ON=1/2AD`, поэтому `MN=1/2(BC+AD)`. Через точку `D` проведём прямую, параллельную диагонали `AC`, пусть `K` — её точка пересечения с прямой `BC` (рис. 30б).

Около окружности радиус которой равен 10 описана равнобедренная трапеция

По построению `ACKD` — параллелограмм, `DK=AC`, `CK=AD` и `/_BDK=90^@`

(т. к. угол `BDK` — это угол между диагоналями трапеции).

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Пусть `BC=a`, `AD=b`, и пусть `h` — высота трапеции (рис. 31). По свойству $$ 4.^$$ `S_(ABO)=S_(CDO)`, обозначим эту площадь `S_0` (действительно, `S_(ABD)=S_(ACD)`, т. к. у них общие основания и равные высоты, т. е. `S_(AOB)+S_(AOD)=S_(COD)+S_(AOD)`, откуда следует `S_(AOB)=S_(COD)`). Так как `S_(ABC)=S_0 + S_1=1/2ah` и `S_(ACD)=S_0+S_2=1/2bh`, то `(S_0+S_1)/(S_0 + S_2)=a/b`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

Около окружности радиус которой равен 10 описана равнобедренная трапеция

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

Около окружности радиус которой равен 10 описана равнобедренная трапеция

Найти радиус окружности, описанной около этой трапеции.

Трапеция равнобокая, по свойству $$ 4.^$$ около этой трапеции можно описать окружность. Пусть `BK_|_AD`, по свойству $$ 4.^$$

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4.^$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

$$ 4.^$$. Если `S_1` и `S_2` — площади треугольников, прилежащих к основаниям, то площади треугольников, прилежащих к боковым сторонам равны `sqrt(S_1S_2)`, а площадь всей трапеции равна `(sqrt(S_1) +sqrt(S_2))^2`.

$$ 4.^$$. Радиус окружности, описанной около трапеции, находится по формуле `R+a/(2sin alpha)`, где `a` — какая-то сторона (или диагональ трапеции), `alpha` — смотрящий на неё вписанный угол.

🎦 Видео

ЕГЭ математика 2023 Вариант 2 задача 1Скачать

ЕГЭ математика 2023  Вариант 2 задача 1

Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

Задача 6 №27916 ЕГЭ по математике. Урок 133

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)Скачать

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)

Геометрия Около окружности с диаметром 15 см описана равнобедренная трапеция с боковой сторонойСкачать

Геометрия Около окружности с диаметром 15 см описана равнобедренная трапеция с боковой стороной

Периметр прямоуг. трапеции, описанной около окружн., равен 100, ее большая боковая сторона равна 37.Скачать

Периметр прямоуг. трапеции, описанной около окружн., равен 100, ее большая боковая сторона равна 37.

Задача.Скачать

Задача.

8 класс, 6 урок, ТрапецияСкачать

8 класс, 6 урок, Трапеция

Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности

Трапеция, вписанная в окружностьСкачать

Трапеция, вписанная в окружность

Задание 26_Равнобедренная трапеция. Вписанная окружность.Скачать

Задание 26_Равнобедренная трапеция. Вписанная окружность.

ЕГЭ Задание 16 Равнобедренная трапеция Вписанные окружностиСкачать

ЕГЭ Задание 16 Равнобедренная трапеция Вписанные окружности

Окружность с центром в точке O описана ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Окружность с центром в точке O описана ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Задание 24 Равнобокая трапеция Описанная окружностьСкачать

Задание 24 Равнобокая трапеция  Описанная окружность

Задание 24 Площадь описанной равнобокой трапецииСкачать

Задание 24 Площадь описанной равнобокой трапеции
Поделиться или сохранить к себе: