Около любого правильного многоугольника можно описать окружность

Окружность, описанная около правильного многоугольника

Теорема

Около любого правильного многоугольника можно описать окружность, и притом только одну.

Доказательство

Дано: А1А2А3. Аn — правильный многоугольник.

Доказательство:

Пусть точка О — точка пересечения биссектрис углов А1 и А2. Соединим точку О отрезками с остальными вершинами многоугольника и докажем, что ОА1 = ОА2 = . = ОАn.

Около любого правильного многоугольника можно описать окружность

А1А2А3. Аn — правильный многоугольник, значит, Около любого правильного многоугольника можно описать окружностьА1 = Около любого правильного многоугольника можно описать окружностьА2, тогда Около любого правильного многоугольника можно описать окружность1 = Около любого правильного многоугольника можно описать окружность3 (т.к. ОА1 и ОА2 биссектрисы равных углов А1 и А2), следовательно,

Около любого правильного многоугольника можно описать окружностьА1ОА2 — равнобедренный (по признаку равнобедренного треугольника), поэтому ОА1 = ОА2.

Около любого правильного многоугольника можно описать окружностьА1ОА2 = Около любого правильного многоугольника можно описать окружностьА2ОА3 по двум сторонам и углу между ними (А1А2 = А2А3 как стороны правильного многоугольника, ОА2 — общая, Около любого правильного многоугольника можно описать окружность3 = Около любого правильного многоугольника можно описать окружность4, т.к. ОА2 биссектриса угла А2), следовательно,

ОА1 = ОА3. Аналогично можно доказать, что ОА2 = ОА4, ОА3 = ОА5 и т.д.

Итак, ОА1 = ОА2 = . = ОАn, значит, точка О равноудалена от всех вершин многоугольника. Поэтому окружность с центром О и радиусом ОА1 является описанной около многоугольника А1А2А3. Аn.

Докажем, что описать можно только одну окружность.

Рассмотрим какие-нибудь три вершины многоугольника А1А2А3. Аn, например, А1, А2, А3. Мы можем начертить только одну окружность одновременно проходящую через три точки А1, А2, А3 (смотри доказательство), т.е. другой окружности проходящей через три данные точки не существует, значит, около многоугольника А1А2А3. Аn можно описать только одну окружность, т.к. точки А1, А2, А3 — вершины данного многоугольника. Теорема доказана.

Поделись с друзьями в социальных сетях:

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Около любого правильного многоугольника можно описать окружность

Какие из следующих утверждений верны?

1) Около любого правильного многоугольника можно описать не более одной окружности.

2) Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.

3) Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.

4) Около любого ромба можно описать окружность.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Около любого правильного многоугольника можно описать не более одной окружности.»— верно, около любого правильного многоугольника можно описать окружность, и притом только одну.

2) «Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.» — верно, треугольник с такими сторонами является прямоугольным, таким образом, центр окружности лежит на гипотенузе.

3) «Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.» — верно, диагонали квадрата точкой пересечения делятся пополам, таким образом, центром окружности является точка пресечения диагоналей.

4) «Около любого ромба можно описать окружность.» — неверно, чтобы около четырёхугольника можно было описать окружность, необходимо, чтобы сумма противоположных углов четырёхугольника составляла 180°. Это верно не для любого ромба.

Видео:110. Окружность, описанная около правильного многоугольникаСкачать

110. Окружность, описанная около правильного многоугольника

Около любого многоугольника можно описать окружность

Видео:Окружность, описанная около правильного многоугольника | Геометрия 7-9 класс #105 | ИнфоурокСкачать

Окружность, описанная около правильного многоугольника | Геометрия 7-9 класс #105 | Инфоурок

Окружность, описанная около правильного многоугольника

Теорема

Около любого правильного многоугольника можно описать окружность, и притом только одну.

Доказательство

Дано: А1А2А3. Аn — правильный многоугольник.

Доказательство:

Пусть точка О — точка пересечения биссектрис углов А1 и А2. Соединим точку О отрезками с остальными вершинами многоугольника и докажем, что ОА1 = ОА2 = . = ОАn.

Около любого правильного многоугольника можно описать окружность

А1А2А3. Аn — правильный многоугольник, значит, Около любого правильного многоугольника можно описать окружностьА1 = Около любого правильного многоугольника можно описать окружностьА2, тогда Около любого правильного многоугольника можно описать окружность1 = Около любого правильного многоугольника можно описать окружность3 (т.к. ОА1 и ОА2 биссектрисы равных углов А1 и А2), следовательно,

Около любого правильного многоугольника можно описать окружностьА1ОА2 — равнобедренный (по признаку равнобедренного треугольника), поэтому ОА1 = ОА2.

Около любого правильного многоугольника можно описать окружностьА1ОА2 = Около любого правильного многоугольника можно описать окружностьА2ОА3 по двум сторонам и углу между ними (А1А2 = А2А3 как стороны правильного многоугольника, ОА2 — общая, Около любого правильного многоугольника можно описать окружность3 = Около любого правильного многоугольника можно описать окружность4, т.к. ОА2 биссектриса угла А2), следовательно,

ОА1 = ОА3. Аналогично можно доказать, что ОА2 = ОА4, ОА3 = ОА5 и т.д.

Итак, ОА1 = ОА2 = . = ОАn, значит, точка О равноудалена от всех вершин многоугольника. Поэтому окружность с центром О и радиусом ОА1 является описанной около многоугольника А1А2А3. Аn.

Докажем, что описать можно только одну окружность.

Рассмотрим какие-нибудь три вершины многоугольника А1А2А3. Аn, например, А1, А2, А3. Мы можем начертить только одну окружность одновременно проходящую через три точки А1, А2, А3 (смотри доказательство), т.е. другой окружности проходящей через три данные точки не существует, значит, около многоугольника А1А2А3. Аn можно описать только одну окружность, т.к. точки А1, А2, А3 — вершины данного многоугольника. Теорема доказана.

Поделись с друзьями в социальных сетях:

Видео:Правильный многоугольник. Окружность, описанная около правильного многоугольника.Скачать

Правильный многоугольник. Окружность, описанная около правильного многоугольника.

Около любого многоугольника можно описать окружность

Какие из следующих утверждений верны?

1) Около любого правильного многоугольника можно описать не более одной окружности.

2) Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.

3) Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.

4) Около любого ромба можно описать окружность.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Около любого правильного многоугольника можно описать не более одной окружности.»— верно, около любого правильного многоугольника можно описать окружность, и притом только одну.

2) «Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.» — верно, треугольник с такими сторонами является прямоугольным, таким образом, центр окружности лежит на гипотенузе.

3) «Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.» — верно, диагонали квадрата точкой пересечения делятся пополам, таким образом, центром окружности является точка пресечения диагоналей.

4) «Около любого ромба можно описать окружность.» — неверно, чтобы около четырёхугольника можно было описать окружность, необходимо, чтобы сумма противоположных углов четырёхугольника составляла 180°. Это верно не для любого ромба.

Видео:9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

Описанная и вписанная окружность

теория по математике 📈 планиметрия

Видео:Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

Описанная окружность

Окружность называется описанной вокруг многоугольника, если все вершины многоугольника принадлежат этой окружности. Многоугольник в этом случае называется вписанным в окружность.

Любой правильный многоугольник можно вписать в окружность. На рисунке описанная окружность проходит через каждую вершину правильного шестиугольника.

Около любого правильного многоугольника можно описать окружность

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Вписанная окружность

Окружность называется вписанной в многоугольник, если она касается всех его сторон. Многоугольник в этом случае называется описанным около окружности.

В любой правильный многоугольник можно вписать окружность. На рисунке окружность вписана в правильный шестиугольник, она касается всех его сторон.

Около любого правильного многоугольника можно описать окружность

Вписанный и описанный треугольники

Центр описанной около треугольника окружности лежит на пересечении серединных перпендикуляров, проведенных к сторонам треугольника.

В любой треугольник можно вписать окружность: Около любого правильного многоугольника можно описать окружностьЦентр вписанной окружности

Центр окружности, вписанной в треугольник, лежит на пересечении его биссектрис.

Вписанный и описанный четырехугольники

Не во всякий четырехугольник можно вписать окружность. Например, в прямоугольник нельзя вписать окружность. По рисунку видно, что окружность касается только трех его сторон, что не соответствует определению.

Около любого правильного многоугольника можно описать окружностьУсловие вписанной в 4-х угольник окружности

Окружность является вписанной в четырехугольник, если суммы длин противоположных сторон равны.

Около любого правильного многоугольника можно описать окружность

На рисунке выполняется данное условие, то есть AD + BC=DC + AB

Окружность является описанной около четырехугольника, если суммы противоположных углов равны 180 градусов.

Около любого правильного многоугольника можно описать окружность

На рисунке окружности описана около четырехугольника, следовательно выполнено условие, что сумма углов А и С равна сумме углов B и D и равна 180 градусов.

🔥 Видео

Правильные многоугольники. Урок 11. Геометрия 9 классСкачать

Правильные многоугольники. Урок 11. Геометрия 9 класс

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Геометрия 9 класс (Урок№22 - Формулы площади правильного многоугольника,стороны и радиуса впис.окр.)Скачать

Геометрия 9 класс (Урок№22 - Формулы площади правильного многоугольника,стороны и радиуса впис.окр.)

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность, вписанная в правильный многоугольник | Геометрия 7-9 класс #106 | ИнфоурокСкачать

Окружность, вписанная в правильный многоугольник | Геометрия 7-9 класс #106 | Инфоурок

Большие последствия мелких расходов: ФАКТОР ЛАТТЕ. МИЛЛИОНЕР – АВТОМАТИЧЕСКИ // Дэвид БахСкачать

Большие последствия мелких расходов: ФАКТОР ЛАТТЕ. МИЛЛИОНЕР – АВТОМАТИЧЕСКИ // Дэвид Бах

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Формулы для вычисления площади правильного многоугольника,его стороны и радиуса вписанной окружностиСкачать

Формулы для вычисления площади правильного многоугольника,его стороны и радиуса вписанной окружности

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

111. Окружность, вписанная в правильный многоугольникСкачать

111. Окружность, вписанная в правильный многоугольник

ОПИСАННАЯ ОКРУЖНОСТЬ около многоугольника | геометрия 9 классСкачать

ОПИСАННАЯ ОКРУЖНОСТЬ около многоугольника | геометрия 9 класс
Поделиться или сохранить к себе: