Центральная симметрия — это симметрия относительно точки.
Пусть дана некоторая точка O. Чтобы построить точку, симметричную относительно точки O некоторой точке A, надо:
1) Провести луч AO.
2) С другой стороны от точки O на луче AO отложить отрезок OA1, равный отрезку AO.
Полученная точка A1 симметрична точке A относительно точки O.
Точка O называется центром симметрии.
Таким образом, точки A и A1симметричны относительно точки O, если O — середина отрезка AA1. Точка O считается симметричной самой себе.
Преобразование фигуры F в фигуру F1, при котором каждая точка A фигуры F переходит в точку A1, симметричную относительно данной точки O, называется преобразованием симметрии относительно точки O. Фигуры F и F1 называются фигурами, симметричными относительно точки O.
Чтобы построить треугольник, симметричный треугольнику ABC относительно точки O, достаточно построить точки A1, B1 и C1, симметричные точкам A, B и C относительно точки O, и соединить их отрезками.
Треугольники ABC и A1B1C1 симметричны относительно точки O.
Если преобразование симметрии относительно точки O переводит фигуру в себя, то такая фигура называется центрально-симметричной, а точка O называется центром симметрии этой фигуры.
Примеры центрально-симметричных фигур:
1) Параллелограмм.
Центр симметрии параллелограмма — точка пересечения его диагоналей.
Центр симметрии окружности — её центр.
3) Прямая.
Центром симметрии прямой является любая точка этой прямой ( то есть прямая имеет бесконечное множество центров симметрии).
Преобразование симметрии относительно точки является движением.
Видео:Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)Скачать
Осевая и центральная симметрия
О чем эта статья:
Видео:Осевая симметрия, как начертить треугольники симметричноСкачать
Что такое симметрия
Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.
Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.
Центр симметрии — это точка, в которой пересекаются все оси симметрии.
Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.
Рассмотрите фигуры с осевой и центральной симметрией.
- Ось симметрии угла — биссектриса.
- Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
- Оси симметрии прямоугольника проходят через середины его сторон.
- У ромба две оси симметрии — прямые, содержащие его диагонали.
- У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
- Ось симметрии окружности — любая прямая, проведенная через ее центр.
Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.
Видео:8 класс, 9 урок, Осевая и центральная симметрияСкачать
Осевая симметрия
Вот как звучит определение осевой симметрии:
Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.
При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.
Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.
В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.
Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.
Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.
- Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
- Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
- С другой стороны прямой отложим такие же расстояния.
- Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
- Получаем два треугольника, симметричных относительно оси симметрии.
Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.
- Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
- Измеряем расстояние от вершин до точек на прямой.
- Откладываем такие же расстояния на другой стороне оси симметрии.
- Соединяем точки и строим треугольник A1B1C1.
Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.
- Проводим через точку А прямую, перпендикулярную прямой l.
- Проводим через точку В прямую, перпендикулярную прямой l.
- Измеряем расстояния от точек А и В до прямой l.
- Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
- Соединяем точки A1 и B1.
Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!
Видео:Построение медианы в треугольникеСкачать
Центральная симметрия
Теперь поговорим о центральной симметрии — вот ее определение:
Центральной симметрией называется симметрия относительно точки.
Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.
Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.
Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).
- Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
- Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
- Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
- Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.
Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).
- Измеряем расстояние от точки B до точки О и от точки А до точки О.
- Проводим прямую из точки А через точку О и выводим ее на другую сторону.
- Проводим прямую из точки B через точку О и выводим ее на другую сторону.
- Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
- Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.
Видео:Осевая симметрия. 6 класс.Скачать
Задачи на самопроверку
В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!
Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.
Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:
Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная
Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.
Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.
Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.
Видео:Осевая и центральная симметрия, 6 классСкачать
Осевая и центральная симметрия
Вы будете перенаправлены на Автор24
Видео:Центральная и осевая симметрии. Геометрия 7 класс.Скачать
Понятие движения
Разберем сначала такое понятие как движение.
Отображение плоскости называется движением плоскости, если при этом отображении сохраняются расстояния.
Существуют несколько теорем, связанных с этим понятием.
Отрезок, при движении, переходит в равный ему отрезок.
Треугольник, при движении, переходит в равный ему треугольник.
Любая фигура, при движении, переходит в равную ей фигуру.
Осевая и центральная симметрия являются примерами движения. Рассмотрим их более подробно.
Видео:Ось симметрииСкачать
Осевая симметрия
Точки $A$ и $A_1$ называются симметричными относительно прямой $a$, если эта прямая перпендикулярна к отрезку $_1$ и проходит через его центр (рис. 1).
Рассмотрим осевую симметрию на примере задачи.
Построить симметричный треугольник для данного треугольника относительно какой-либо его стороны.
Решение.
Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно стороны $BC$. Сторона $BC$ при осевой симметрии перейдет в саму себя (следует из определения). Точка $A$ перейдет в точку $A_1$ следующим образом: $_1bot BC$, $_1$. Треугольник $ABC$ перейдет в треугольник $A_1BC$ (Рис. 2).
Фигура называется симметричной относительно прямой $a$, если каждая симметричная точка этой фигуры содержится на этой же фигуре (рис. 3).
Готовые работы на аналогичную тему
На рисунке $3$ изображен прямоугольник. Он обладает осевой симметрией относительно каждого своего диаметра, а также относительно двух прямых, которые проходят через центры противоположных сторон данного прямоугольника.
Видео:Оси симметрии прямоугольника, равнобедренного треугольника, окружностиСкачать
Центральная симметрия
Точки $X$ и $X_1$ называются симметричными относительно точки $O$, если точка $O$ является центром отрезка $_1$ (рис. 4).
Рассмотрим центральную симметрию на примере задачи.
Построить симметричный треугольник для данного треугольника какой-либо его вершины.
Решение.
Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно вершины $A$. Вершина $A$ при центральной симметрии перейдет в саму себя (следует из определения). Точка $B$ перейдет в точку $B_1$ следующим образом $_1$, а точка $C$ перейдет в точку $C_1$ следующим образом: $_1$. Треугольник $ABC$ перейдет в треугольник $_1C_1$ (Рис. 5).
Фигура является симметричной относительно точки $O$, если каждая симметричная точка этой фигуры содержится на этой же фигуре(рис. 6).
На рисунке $6$ изображен параллелограмм. Он обладает центральной симметрией относительно точки пересечения его диагоналей.
Пусть нам дан отрезок $AB$. Построить его симметрию относительно прямой $l$, не пересекающий данный отрезок и относительно точки $C$, лежащей на прямой $l$.
Решение.
Изобразим схематически условие задачи.
Изобразим для начала осевую симметрию относительно прямой $l$. Так как осевая симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A’B’$. Для его построение сделаем следующее: проведем через точки $A и B$ прямые $m и n$, перпендикулярно прямой $l$. Пусть $mcap l=X, ncap l=Y$. Далее проведем отрезки $A’X=AX$ и $B’Y=BY$.
Изобразим теперь центральную симметрию относительно точки $C$. Так как центральная симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A»B»$. Для его построения сделаем следующее: проведем прямые $AC и BC$. Далее проведем отрезки $A^C=AC$ и $B^C=BC$.
🎬 Видео
Центральная симметрияСкачать
Осевая и центральная симметрия.Скачать
Центральная симметрия. 6 класс.Скачать
Геометрия 9 класс (Урок№29 - Параллельный перенос.)Скачать
Теорема о биссектрисе угла треугольника | Осторожно, спойлер! | Борис Трушин |Скачать
Числа сочетаний. Треугольник Паскаля | Ботай со мной #059 | Борис Трушин |Скачать
Геометрия 9 класс (Урок№30 - Поворот.)Скачать
ЭТИ Правила Работают на 100.Бесценные Советы Черниговской о том, как сохранить Ясный Ум до старостиСкачать
48. Осевая и центральная симметрииСкачать
Математика 5 класс. Ось симметрии фигурыСкачать
Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать