Обозначение дуги окружности в геометрии при письме

Обозначение дуги окружности в геометрии при письме

§ 12. ОКРУЖНОСТЬ. КРУГ.

1. Радиус. Хорда. Диаметр.

Если мы раскроем циркуль и укрепим конец одной ножки в какой-нибудь точке плоскости, а другую ножку будем вращать, не меняя раствора циркуля, так, чтобы её конец двигался по плоскости (черт. 82), то этот конец опишет кривую линию, все точки которой находятся на равном расстоянии от одной и той же точки. Если вращение продолжать до тех пор, пока кривая окажется замкнутой, то получим о к р у ж н о с т ь.

Обозначение дуги окружности в геометрии при письме

Окружностью называется кривая замкнутая линия на плоскости, все точки которой находятся на одинаковом расстоянии от одной точки; эта точка называется центром окружности.

Часть плоскости, ограниченная окружностью, называется кругом (черт. 83).

Обозначение дуги окружности в геометрии при письме

Отрезок прямой, соединяющий точку окружности с её центром, называется радиусом (черт. 84).

Так как все точки окружности находятся от центра на одном и том же расстоянии, то все радиусы одной и той же окружности равны между собой. Радиус обыкновенно обозначается буквой R или r.

Точка, взятая внутри окружности, находится от её центра на расстоянии, меньшем радиуса. В этом легко убедиться, если через данную точку провести радиус (черт. 85).

Обозначение дуги окружности в геометрии при письме

Точка, взятая вне окружности, находится от её центра на расстоянии, большем радиуса. В этом легко убедиться, если соединить данную точку с центром окружности (черт. 85).

Отрезок прямой, соединяющий две точки окружности, называется хордой.

Хорда, проходящая через центр, называется диаметром (черт. 84). Диаметр обыкновенно обозначается буквой D. Диаметр равен двум радиусам:

Так как все радиусы одного и того же круга равны между собой, то и все диаметры данного круга равны между собой.

Теорема. Хорда, не проходящая через центр круга, меньше диаметра, проведённого в том же круге.

В самом деле, если проведём какую-нибудь хорду, например АВ, и соединим её концы с центром О (черт. 86), то увидим, что хорда АВ меньше ломаной линии АО + ОВ, т. е. АВ Обозначение дуги окружности в геометрии при письмеАВ; Обозначение дуги окружности в геометрии при письмеАВ < Обозначение дуги окружности в геометрии при письмеАС.

1. Сформулируйте определения, которые приведены в данном параграфе.

2. Сформулируйте теоремы, которые доказаны в данном параграфе.

Видео:8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Знак дуги окружности в геометрии

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Окружность

Окружность — это геометрическая фигура, образованная замкнутой кривой линией, все точки которой одинаково удалены от одной и той же точки.

Точка, от которой одинаково удалены все точки окружности, называется центром окружности. Центр окружности обычно обозначают большой латинской буквой O:

Обозначение дуги окружности в геометрии при письме

Окружность делит плоскость на две области — внутреннюю и внешнюю. Геометрическая фигура, ограниченная окружностью, — это круг:

Обозначение дуги окружности в геометрии при письме

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Построение окружности циркулем

Для построения окружности используют специальный прибор — циркуль:

Обозначение дуги окружности в геометрии при письме

Установим циркулю произвольный раствор (расстояние между ножками циркуля) и, поставив его ножку с остриём в какую-нибудь точку плоскости (например, на листе бумаги), станем вращать циркуль вокруг этой точки. Другая его ножка, снабжённая карандашом или грифелем, прикасающимся к плоскости, начертит на плоскости замкнутую линию — окружность:

Обозначение дуги окружности в геометрии при письме

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Радиус, хорда и диаметр

Радиус — это отрезок, соединяющий любую точку окружности с центром. Радиусом также называется расстояние от точки окружности до её центра:

Обозначение дуги окружности в геометрии при письме

Все радиусы окружности имеют одну и ту же длину, то есть они равны между собой. Радиус обозначается буквой R или r.

Хорда — это отрезок, соединяющий две точки окружности. Хорда, проходящая через центр, называется диаметром окружности.

Обозначение дуги окружности в геометрии при письме

Диаметр обозначается буквой D. Диаметр окружности в два раза больше её радиуса:

Дуга — это часть окружности, ограниченная двумя точками. Любые две точки делят окружность на две дуги:

Обозначение дуги окружности в геометрии при письме

Чтобы различать дуги, на которые две точки разделяют окружность, на каждую из дуг ставят дополнительную точку:

Обозначение дуги окружности в геометрии при письме

Для обозначения дуг используется символ Обозначение дуги окружности в геометрии при письме:

  • Обозначение дуги окружности в геометрии при письмеAFB — дуга с концами в точках A и B, содержащая точку F;
  • Обозначение дуги окружности в геометрии при письмеAJB — дуга с концами в точках A и B, содержащая точку J.

О хорде, которая соединяет концы дуги, говорят, что она стягивает дугу.

Обозначение дуги окружности в геометрии при письме

Хорда AB стягивает дуги Обозначение дуги окружности в геометрии при письмеAFB и Обозначение дуги окружности в геометрии при письмеAJB.

Видео:Определение центра дуги окружности, построение окружности по 3 точкамСкачать

Определение центра дуги окружности, построение окружности по 3 точкам

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Обозначение дуги окружности в геометрии при письме

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Обозначение дуги окружности в геометрии при письме

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:72. Градусная мера дуги окружностиСкачать

72. Градусная мера дуги окружности

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:Как найти длину дуги окружности центрального угла. Геометрия 8-9 классСкачать

Как найти длину дуги окружности центрального угла. Геометрия 8-9 класс

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:Градусная мера дуги окружности | Геометрия 7-9 класс #70 | ИнфоурокСкачать

Градусная мера дуги окружности | Геометрия 7-9 класс #70 | Инфоурок

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:Длина дуги числовой окружности | Алгебра 10 класс #9 | ИнфоурокСкачать

Длина дуги числовой окружности | Алгебра 10 класс #9 | Инфоурок

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Видео:Окружнось, дуга, длина дуги, центральный угол.Скачать

Окружнось, дуга, длина дуги, центральный угол.

Знак дуги окружности в геометрии

Дуга. Разнообразные технические символы.

Символ «Дуга» был утвержден как часть Юникода версии 1.1 в 1993 г.

Видео:Узнать свое происхождение и найти любовь по ДНКСкачать

Узнать свое происхождение и найти любовь по ДНК

Свойства

Версия1.1
БлокРазнообразные технические символы
Тип парной зеркальной скобки (bidi)Нет
Композиционное исключениеНет
Изменение регистра2312
Простое изменение регистра2312

Видео:ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружности

Кодировка

Кодировкаhexdec (bytes)decbinary
UTF-8E2 8C 92226 140 1461484712211100010 10001100 10010010
UTF-16BE23 1235 18897800100011 00010010
UTF-16LE12 2318 35464300010010 00100011
UTF-32BE00 00 23 120 0 35 18897800000000 00000000 00100011 00010010
UTF-32LE12 23 00 0018 35 0 030428364800010010 00100011 00000000 00000000

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Наборы с этим символом:

© Таблица символов Юникода, 2012–2022.
Юникод® — это зарегистрированная торговая марка консорциума Юникод в США и других странах. Этот сайт никак не связан с консорциумом Юникод. Официальный сайт Юникода располагается по адресу www.unicode.org.

Мы используем 🍪cookie, чтобы сделать сайт максимально удобным для вас. Подробнее

Видео:ГЕОМЕТРИЯ (урок 14) окружности, дуги, хордыСкачать

ГЕОМЕТРИЯ (урок 14) окружности, дуги, хорды

Обозначение дуги окружности в геометрии при письме

Дуга. Разнообразные технические символы.

Символ «Дуга» был утвержден как часть Юникода версии 1.1 в 1993 г.

Видео:Длина дуги как доля длины окружности (видео 14) |Окружность и Круг | ГеометрияСкачать

Длина дуги как доля длины окружности (видео 14) |Окружность и Круг | Геометрия

Свойства

Версия1.1
БлокРазнообразные технические символы
Тип парной зеркальной скобки (bidi)Нет
Композиционное исключениеНет
Изменение регистра2312
Простое изменение регистра2312

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Кодировка

Кодировкаhexdec (bytes)decbinary
UTF-8E2 8C 92226 140 1461484712211100010 10001100 10010010
UTF-16BE23 1235 18897800100011 00010010
UTF-16LE12 2318 35464300010010 00100011
UTF-32BE00 00 23 120 0 35 18897800000000 00000000 00100011 00010010
UTF-32LE12 23 00 0018 35 0 030428364800010010 00100011 00000000 00000000

Наборы с этим символом:

© Таблица символов Юникода, 2012–2022.
Юникод® — это зарегистрированная торговая марка консорциума Юникод в США и других странах. Этот сайт никак не связан с консорциумом Юникод. Официальный сайт Юникода располагается по адресу www.unicode.org.

Мы используем 🍪cookie, чтобы сделать сайт максимально удобным для вас. Подробнее

Поделиться или сохранить к себе: