Обонятельный тракт и треугольник

Обонятельный тракт и треугольник

Проводящий путь анализатора обоняния отличается значительной сложностью строения и обилием связей с различными структурами головного мозга Такая особенность строения обусловлена своеобразием эволюции центральной нервной системы, когда на первых этапах филогенеза возникший под влиянием обонятельного рецептора передний мозг является в функциональном отношении чисто обонятельным и все ею компоненты входят в состав обонятельною анализатора В дальнейшем, с формированием конечною мозга развитием коры и превращением конечного мозга в высший отдел центральной нервной системы, в нем возникают новые высшие центры для всех видов чувствитель-ности Однако в головном мозге сохраняется много полифункциональных структур, имеющих отношение к обонятельному анализатору и в то же время выполняющих в определенных ситуациях и другие функции

Проводящий путь анализатора обоняния — система последовательно расположенных нейронов, образующих сложные рефлекторные цепи. благодаря которым становится возможным проведение импульсов с периферии (от рецепторных обонятельных клеток) к корковым и подкорковым обонятельным центрам.

В слизистой оболочке верхнего носового хода (в области верхней носовой раковины и соответствующего участка перегородки носа), в так называемых обонятельных областях заложены первые нейроны обонятельного пут, получившие название рецепторных или обонятельных клеток Рецепторные обонятельные клетки рассеяны в обонятельной области и поэтому обонятельные нервы не имеют нервных узлов в отличие от других чувствительных нервов

Короткие периферические отростки обонятельных клеток — дендриты -заканчиваются утолщениями — обонятельными булавами, выступающими над поверхностью обонятельной области. Каждая булава несет 10-12 обонятельных волосков. Обонятельные волоски, взаимодействуя с молекулами пахучих веществ, трансформируют энергию химического раздражения в нервный импульс.

Обонятельный тракт и треугольник

Центральные отростки (аксоны) обонятельных клеток собираются в 15-20 стволиков — обонятельные нервы.

Обонятельные нервы проходят через отверстия решетчатой кости в полость черепа, где погружаются в обонятельную луковицу и вступают в контакт с дендритами клеток обонятельной луковицы.

От нейронов обонятельной луковицы начинается проводящий путь анализатора обоняния. Аксоны вторых нейронов следуют в составе обонятельного тракта по направлению к обонятельному треугольнику.

Часть волокон обонятельного тракта прерывается в области скопления нервных клеток, расположенных в центральных отделах обонятельного тракта, в обонятельном треугольнике или в переднем продырявленном веществе, т.е. в первичных обонятельных корковых центрах (древняя кора).

Обонятельный тракт и треугольник Обонятельный тракт и треугольник Обонятельный тракт и треугольник Обонятельный тракт и треугольник

Видео:Самые быстрые гайды по неврологии - Обонятельный нервСкачать

Самые быстрые гайды по неврологии - Обонятельный нерв

Ядра проводящего пути обоняния. Признаки поражения обоняния.

Аксоны III нейронов, тела которых расположены в первичных обонятельных корковых центрах, группируются в виде трех обонятельных пучков -латерального, промежуточного и медиального, являющихся основой одноименных обонятельных полосок, и достигают вторичных обонятельных центров: гиппокампа (старая кора) и крючка парагиппокампальной извилины (промежуточная кора).

Латеральный обонятельный пучок — наиболее мощный, он идет непосредственно к корковому концу анализатора обоняния — крючку парагиппокампальной извилины.

Обонятельный тракт и треугольник

Промежуточный обонятельный пучок заканчивается у клеток переднего продырявленного вещества своей и противоположной стороны, следуя в последнем случае через переднюю спайку.

Аксоны клеток продырявленного вещества проходят через прозрачную перегородку, свод и по бахромке гиппокампа устремляются к крючку парагиппокампальной извилины.

Обонятельный тракт и треугольник Обонятельный тракт и треугольник

Медиальный обонятельный пучок заканчивается у клеток подмозолистого поля и паратерминальной извилины (последняя относится к древней коре).

Аксоны клеток подмозолистого поля и паратерминальной извилины направляются к парагиппокампальной извилине и гиппокампу.

В клинической практике наблюдается снижение обоняния, получившее название гипосмии, полная потеря обоняния — аносмия, обострение — гиперосмия.

Местные заболевания носовой полости (риниты, полипы и т.д.) часто сопровождаются гипо- или аносмией.

При аллергических состояниях может развиться гиперосмия.

Опухоли в области лобной доли (вентральная поверхность) ведут к односторонней аносмии или гипосмии, что связано с механическим давлением на обонятельную луковицу и тракт.

При развитии опухоли в парагиппокамиалыюй извилине наблюдаются обонятельные галлюцинации.

Структуры обонятельною мозга (поясная извилина, перешеек поясной извилины парагиппокампальная извилина, гиппокамп, зубчатая извилина, сосцевидные тела), а также такие образования, как миндалевидное тело, свод, передние таламические ядра и др., входят в состав лимбической системы, которая играет существенную роль в формировании сложных интегративных функций организма.

Учебное видео анатомии проводящего пути обонятельного анализатора

Редактор: Искандер Милевски. Дата последнего обновления публикации: 9.9.2020

Видео:Обонятельный анализатор - meduniver.comСкачать

Обонятельный анализатор - meduniver.com

Обоняние: от носа к мозгу, спотыкаясь и падая

05 февраля 2021

Видео:Обонятельный мозг - анатомия центральной нервной системы (ЦНС)Скачать

Обонятельный мозг - анатомия центральной нервной системы (ЦНС)

Обоняние: от носа к мозгу, спотыкаясь и падая

  • 12525
  • 0,0
  • 0
  • 6

Карикатурно представленные обонятельные нейроны заблудились в лабиринте ароматов. На карту нанесены маршруты из запахов, которые используют в одном из стандартных тестов, проверяющих обоняние: испытуемого просят назвать, на что похожи предъявляемые запахи [1].

иллюстрация Глеба Русина

Автор
Редакторы

Статья на конкурс «Био/Мол/Текст»: Как вы думаете, от какого из чувств люди скорее готовы отказаться? Увы, чаще всего говорят: «обоняние». Но это непопулярное чувство намного важнее и загадочнее, чем мы считаем. И в то же время оно очень уязвимо: все мы ждем, что можно будет перестать волноваться о внезапной потере обоняния. Что же таинственного прячут молекулярные и клеточные механизмы обоняния? И почему именно его теряют полностью или частично? Об этом и многих других неожиданных поворотах исследований обоняния читайте в статье.

Обонятельный тракт и треугольник

Видео:Обонятельные нервыСкачать

Обонятельные нервы

Конкурс «Био/Мол/Текст»-2020/2021

Обонятельный тракт и треугольникЭта работа заняла второе место в номинации «Свободная тема» конкурса «Био/Мол/Текст»-2020/2021.

Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

Обонятельный тракт и треугольник

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

В мае 2019 года из университета Канберры, опасаясь возможной утечки газа, эвакуируют полтысячи человек; в июле 2019 года самолёт, направлявшийся из Филадельфии в Лондон, совершает экстренную посадку в Бостоне; в июне 2020 года шесть сотрудников почтового отделения отправлены в больницу, — десятки похожих историй появляются в прессе с завидной регулярностью. Что же их объединяет? Провокатор этих происшествий — запахи и наша способность их воспринимать. Мы, как читатели, сочтём эти ситуации курьёзом. Но пострадавшие от отправленного кем-то дуриана или невыносимого запаха в салоне вряд ли захотят повторять такой опыт. Но не стоит завидовать тем, кто, находясь в месте непосредственных событий, остаётся только зрителем, не понимая, в чем причина для паники. За это право приходится дорого платить — обоняние довольно легко потерять, а вот вернуть иногда невозможно.

«Добро пожаловать в мир без вкуса и запаха», — лирично сообщают знакомые в соцсетях. Наверное, самый выделяющийся симптом этой пандемии. Мы стали внимательнее к аромату утреннего кофе и небеспричинно начинаем беспокоиться, если все блюда обеда будут одинаково никакими по вкусу. Потеря обоняния, известная как аносмия, привлекла в 2020 году беспрецедентное научное и общественное внимание (рис. 1).

Обонятельный тракт и треугольник

Рисунок 1. Количество публикаций в PubMed по запросу «аносмия». (По данным на 10 декабря 2020 года).

Устранять последствия пандемии мы будем долго, но среди безрадостных цифр найдутся и положительные влияния на здоровье людей — помимо привычки регулярно мыть руки. Например, аносмия и гипосмия (снижение обоняния) — больше не малоизвестные термины. И есть надежда, что исследования последнего года откроют дорогу к созданию новых методов терапии. Знаем об обонянии мы теперь точно немного больше.

По разным докоронавирусным данным эта патология затрагивает от 5% до 20% процентов людей. Предпосылки аносмии разнообразны — это респираторные инфекции, травмы головы, токсические действия лекарств, аллергии и многое другое. В самых крайних случаях — например, при недоразвитии обонятельных долей мозга или генетических дефектах — люди так и узнают мир: практически без вкуса и запаха. Болезнь Паркинсона, Альцгеймера, рассеянный склероз — только некоторые заболевания масштаба эпидемий, о наступлении которых за много лет может сообщить потеря или резкое снижение обоняния [2]. Диагноз «идиопатическая аносмия» получит около четверти людей, так и не узнав, почему они лишились нюха. «Обонятельные» чрезвычайные ситуации тоже бывают — истории шеф-поваров, оставшихся после аварий без работы, можно легко найти в интернете.

Будь то результат пренебрежения или других заблуждений, но обоняние, тип хеморецепции, — самое древнее и самое неразгаданное чувство. На школьных медосмотрах не проверяют наш нюх, в кино пока не пришли ароматы, а говорить о запахах нам часто становится неловко. Как следствие, и в нарушениях мы пока не разбираемся до конца. В феврале благотворительные и научные организации отмечают День осведомлённости об аносмии. Они справедливо считают, что нарушения обонятельной системы заслуживают более серьезного внимания. Как же возникает аносмия? На этот вопрос мы и попытаемся ответить.

Видео:ОБОНЯТЕЛЬНЫЙ НЕРВ (N. OLFACTORIUS) │ Черепно-мозговые нервы │ I параСкачать

ОБОНЯТЕЛЬНЫЙ НЕРВ (N. OLFACTORIUS) │ Черепно-мозговые нервы │ I пара

Обозначим маршрут

Чтобы понять природу нарушений, мы проследим, как формируется обонятельное измерение. А точнее, обозначим клеточные и молекулярные основы превращения одоранта в нервный сигнал. Для знакомства с обонятельным анализатором (в терминах И.П. Павлова) разберём его на три части (рис 2). Обонятельные нейроны в составе эпителия (это продолжение мозга у нас в носу) улавливают молекулы одорантов (летучих веществ) и отвечают на них сигналом — потенциалом действия. Сигнал уходит по аксонам в обонятельную луковицу, где они переключаются на митральные или пучковые клетки в гломерулах. А дальше по проводам обонятельного тракта информация о запахах отправляется в центральную часть мозга — пириформную кору, миндалину, обонятельный бугорок, энторинальную кору. Уже оттуда сигналы расходятся дальше — в гипоталамус, таламус, гиппокамп, орбитофронтальную кору и др.

Основное внимание мы сосредоточим на периферии анализатора — обонятельных нейронах. По этой причине, к сожалению, за пределами рассказа останутся объяснения многих таинственных аспектов: расшифровка, узнавание и классификация запахов, их связь с эмоциями и воспоминаниями, физиология (например, как похудеть, если отказаться от запахов). Однако попутно представится возможность узнать о некоторых интригующих секретах обоняния, многообещающих клинических испытаниях, Нобелевских лауреатах и новой нейромедиаторной системе, ещё не успевшей попасть во многие учебники.

Обонятельный тракт и треугольник

Рисунок 2. Строение обонятельной системы. Показаны основные структуры: окончания аксонов митральных и пучковых клеток в головном мозге — центральные проекции обонятельного тракта (обонятельные центры); обонятельная луковица с гломерулами, обонятельный тракт, строение обонятельного эпителия.

Видео:Билет 034. ОБОНЯТЕЛЬНЫЙ АНАЛИЗАТОР, ЕГО ЧАСТИ. ПЕРВАЯ ПАРА ЧЕРЕПНЫХ НЕРВОВ.Скачать

Билет 034. ОБОНЯТЕЛЬНЫЙ АНАЛИЗАТОР, ЕГО ЧАСТИ. ПЕРВАЯ ПАРА ЧЕРЕПНЫХ НЕРВОВ.

Глава I. С чего всё действительно начинается?

Начинается всё до рецептора

Итак, на периферии анализатора работают обонятельные биполярные нейроны. Это они известны уникальной для нервной системы способностью к обновлению. Укрывает их слой назального мукуса, в который с поверхности эпителия выглядывают реснички нейронов, которые делают их похожими на актиний (рис. 5). На ресничках расположены комплексы обонятельных рецепторов — самого многочисленного семейства среди рецепторов, связанных с G-белком (им посвящена одна из рубрик «Биомолекулы»). Когда молекула одоранта преодолеет слой мукуса, произойдёт ведущее событие трансдукции — она свяжется с рецептором. Однако обоняние может прерваться, даже не успев начаться.

Трансдукция — преобразование внешнего воздействия в код нервных сигналов.

Дело в том, что слизь в носовой полости совершенно не заслуживает негативных коннотаций. Помимо очевидной защитной функции, она обеспечивает удержание, транспорт и удаление молекул одоранта. При воспалении усиленная продукция слизи становится физически непреодолимым барьером для молекул. Что же входит в состав слизи кроме воды и ответственных за вязкость мукогликопротеинов? Это иммуноглобулины, цитокины, лизоцим и лактоферрин, кальций-связывающие белки псориазин и кальпротектин, различные пептидазы, калликреин, глутатион-S-трансфераза, карбоксилэстераза, дегидрогеназы, цитохром P450, пероксиредоксины, пероксидазы, Plunc — белок небно-легочно-назального эпителиального клона, ионы металлов, и главным образом одорант-связывающие белки [3] — список неполный, но внушительный. Более 400 молекул с различными свойствами, включая антимикробные и обезвреживающие ксенобиотики, защищают уязвимый сенсорный эпителий от внешнего воздействия.

Особого внимания заслуживают одорант-связывающие белки, далее OBPs (от англ. odorant binding proteins). Они принадлежат семейству транспортных липокалинов и помогают гидрофобным молекулам добираться до рецепторов. Вдобавок они помогают рецепторам расставаться с одорантами [4]. У человека пока известен единственный вид ОВРs, кодируемый геном OBP2A. И если не повезло с генетическим полиморфизмом, то молекулам не стоит ожидать комфортной дороги к рецептору: один из аллельных вариантов отличается низкой чувствительностью транспортного белка. Как следствие, развивается гипосмия [5].

Обонятельный тракт и треугольник

Рисунок 3. Одорант-связывающие белки в мукусе захватывают одоранты для их транспортировки к рецепторам на ресничках обонятельных нейронов.

С большим энтузиазмом к ОВРs относятся биоинженеры. Чем они ещё могли привлечь учёных? В мукусе ОВРs успешно функционируют в коктейле протеолитиков, а также они устойчивы к температурам и органическом растворителям. Остаётся научиться настраивать специфичность ОВРs или использовать уже имеющуюся — и в руках оказываются неплохие составляющие для создания искусственных сенсорных систем.

Часть ферментов из списка активна по отношению к самим одорантам [6]! Можно ли быть уверенным, что для рецептора, лишённого своего мукусного окружения, в эксперименте найдут правильный лиганд? Это ещё предстоит уточнить. Про связь состава слизи и возрастного ухудшения обоняния пока тоже непонятно. Не исключено, что в долгосрочной перспективе для дифференциальной диагностики синуситов и ринитов к цитологическим исследования мукуса, риноцитограммам, добавят и протеомный анализ [7], [8].

Помощь со стороны

Также в мукусе комфортно живут бактерии со своими разнообразными ферментами и метаболитами (часть из которых будут одорантами). Кто особенно интересуется микробной флорой носа? К сожалению, таких мало. Но если хочется привлечь к исследованию безмикробных мышей, то это стоит учитывать [9]. Обоняние у животных занимает не последнее место, и действительно, поведение мышей с бактериально осиротевшим обонятельным эпителием может отличаться. А влияют ли сами бактерии на остроту нашего нюха? Пока знание об этом в зачаточном состоянии. Подозревают, что есть бактерии, потеря которых будет критической [10]. Но всё же основной принцип скорее «больше — не значит лучше». Причём как количественно — усиленное заселение бактериями блокирует доступ для молекул, — так и качественно. Шведские учёные обнаружили, что у людей, чей балл TDI был меньше нормы, в мукусе носа есть характерные для кишечника и полости рта виды фекалибактерий, энтеробактерий, порфиромонад [11].

К слову об оценках. Для объективного исследования обоняния вычисляют TDI-индекс (общий индекс обоняния). Он рассчитывается по данным тестов, оценивающих: threshold — порог восприятия (например, бутанола-1), discrimination — показатель дискриминации запахов (в тройке просят найти отличающийся от двух запах), identification — показатель идентификации запахов.

Исследователи предполагают, что, в отличие от кишечника, увеличенная продукция бутирата этими видами оказывается в носу не к месту. Порфиромонаду, кстати, можно было заметить на страницах ноябрьского Nature [12]. В специальном материале вновь обсуждали статус инфекционной гипотезы Альцгеймера. У этого вопроса тернистый путь длиной в десятилетия, и, чтобы разрешить все сомнения, знаний пока недостаточно. Однако, кажется, уместно размышлять, что обонятельный эпителий как минимум упрощает микробам доступ в ЦНС.

А вот об участии бактерий в том, как мы пахнем, известно однозначно. В неприятном для большинства запахе пота можно обвинять, например, колонии коринебактерий и стафилококков. Они превращают аминокислоты в характерно пахнущие изовалериановую кислоту и серосодержащие вещества. В исследовательском отделе швейцарской фирмы Живодан активно исследуют, как мы приобретаем свойственный нам запах и как воспринимаем чужие. Оказалось, что основной вклад в подмышечный аромат вносят продукты специального фермента коринебактерий — Nα—ацил-глутамин-аминоацилазы и производимых ею карболовых кислот. Ещё исследователи смогли установить, как распространённый в Восточной Азии полиморфизм гена ABCC11 (кодирует АТФ-связанные кассетный транспортер) связан с почти полной потерей привычных для нас компонентов запаха [13]. Многие читатели наверняка знакомы с историей, заманчиво намекающей нам его важность. В 1995 году впервые сообщили о связи HLA-генотипа (от англ. Human Leukocyte Antigens — человеческий лейкоцитарный антиген) и индивидуальной привлекательности запаха. Речь шла о соединениях, не являющихся феромонами. Естественный вопрос — что же могло пахнуть? Вы могли слышать, что HLA принимает участие в диалоге бактерий и иммунной системы, а значит способен влиять на состав микробиома и производимые запахи. Следовательно, оценка чужого запаха как приятного или нет может зависеть от бактериальных метаболитов? Но не стоит поддаваться соблазну — подобное объяснение приводит в тупик. Исследования ассоциированного с HLA запахового паттерна пока не дают результатов, а к известному эксперименту с футболками тоже есть вопросы , [14]. Но думаю, никто не будет спорить, что неприятный запах тела приводит к социальному изгнанию. Ещё, как показала Джой Милн, они могут предупреждать о болезни Паркинсона.

В 1995 году профессор Клаус Ведекинд собрал почти 50 мужчин, которые согласились на два дня отказаться от любой парфюмированной химии и не менять футболку. Примерно столько же женщин согласились оценить, насколько привлекательным им кажется запах этих футболок. Он обнаружил, что чем больше генотип HLA у женщины отличался от мужчины, носившего футболку, тем положительнее была оценка его запаха. Этот эксперимент запомнился как «опыт с пахнущими майками».
Диагностика болезней по запаху — вполне перспективное занятие. Джой Милн потеряла мужа из-за болезни Паркинсона. Она заметила изменения — странный запах — ещё за несколько лет до постановки диагноза. Познакомившись с другими больными, она поняла, что так пахнет эта болезнь. В прошлом году сообщили, что наконец удалось выяснить, какие пахучие молекулы ответственны за этот аромат. Полагаться только на людей с «супер-нюхом» нельзя, поэтому для диагностики активно разрабатывают электронные устройства. Кстати, «Биомолекула» уже писала о них [15].

Другими словами, запахи важны для нашей повседневной жизни. Пусть даже вам неинтересны детали химического общения людей. Но, может, вы всегда мечтали к просмотру любимого кулинарного шоу добавить еще и запахи. Не стоит ошибочно полагать что исследования мукуса недостойны научного изыскания. Мукус — это не просто 95% воды, это — биологически активная система. Ферментативные превращения веществ в мукусе и участие микробного сообщества — возможный источник несоответствия между нашим восприятием и ответами рецепторов в чашке Петри. Если мы хотим достойно воспроизводить воспринимаемые запахи, то нужно иметь в виду перирецепторные события (так называют события, предшествующие активации рецептора) [16].

Второстепенных ролей не существует

Под слоем мукуса мы найдём обонятельный эпителий (рис. 4). В его составе традиционно выделяли три группы клеток — собственно обонятельные нейроны, окружающие их опорные клетки и базальные стволовые клетки. И в дополнение — железы Боумена. Впрочем, об обонятельных нейронах и их ресничках (цилиях) речь пойдет чуть позже.

Обонятельный тракт и треугольник

Рисунок 4. Схематическое строение многослойного обонятельного эпителия.

Трава под ресничками нейрона (рис. 4) — это микроворсинки клеток с одноимённым названием — микроворсинчатые клетки (англ. microvillar cells, MVS), а также опорные клетки (англ. sustentacular cells). Опорные клетки производят компоненты мукуса, окисляющие ксенобиотики, а также механически поддерживают и разделяют нейроны. Истинные взаимоотношения клеток эпителия намного сложнее, чем принято считать. Например, зачем микроворсинчатым клеткам экспрессировать канал TRPM5, больше известный как рецептор горького вкуса? Оказывается, это тоже инструмент защиты эпителия, он связывает подозрительные метаболиты. На это клетка отвечает выделением ацетилхолина, который, в свою очередь, стимулирует опорные клетки (это проявление паракринной регуляции): сигнального кальция в опорных клетках становится больше, и клетки активнее производят защитные ферменты [17]. Увы, разнообразие мембранных белков не-нейрональных клеток эпителия иногда оборачивается проблемами. Например, обнаружили, что проникновение нового коронавируса происходит через связывание с сериновой протеазой-2 TMPRSS2 (от англ. Transmembrane protease, serine 2) и ангиотензинпревращающим ферментом 2 ACE2 (от англ. Angiotensin-converting enzyme 2) на микроворсинчатых и опорных клетках. Эти «рецепторы» также есть и на глубоко лежащих базальных клетках, и в тканях мозга. Возможно, при их повреждении и наблюдаются случаи длительной аносмии и других менее типичных симптомов [18], [19]. Различные белковые комплексы могут сходным образом открывать двери и для входа других патогенных организмов.

Есть и другие угрозы для целостности эпителия: контакт с агрессивными химическими реагентами и лекарствами может привести к гибели опорных клеток. За ней последует апоптоз обонятельных нейронов и аносмия. Потенциально на это способны многие вещества, например, известный кожный аллерген — сульфат никеля, применяемый в промышленности и, вполне возможно, до сих пор встречающийся в косметических изделиях.

Иногда отлаженная работа клеток эпителия оказывается под атакой системных заболеваний. Например, до 70% процентов больных муковисцидозом в некоторой степени утрачивают обоняние. Муковисцидоз — это тяжелое заболевание, вызванное мутациями гена хлорного канала CFTR (от англ. Cystic Fibrosis Transmembrane conductance Regulator). Такой канал есть на подтипе микроворсинчатых клеток, производящих нейропептид Y, который, к слову, провоцирует усиленную пролиферацию стволовых клеток, а сам канал CFTR координирует гомеостаз обонятельного эпителия [20]. Так, потеря канала приводит к истощению слоя мукуса, поскольку вода и натрий стремительно направляются внутрь клеток. В сочетании с увеличеной продукцией нейропептида Y и активацией иммунного ответа обонятельный эпителий функционирует хуже [21] — отсюда и ухудшение обоняния. Все связующие звенья этого процесса ещё предстоит узнать. Но, возможно, по следам этих экспериментов получится создать клеточные модели заболевания.

Сами обонятельные нейроны сменяют друг друга каждые 30–40 дней. Меняются и поддерживающие клетки. Их последователи развиваются в основном из шаровидных базальных клеток. Считается, что горизонтальные стволовые клетки — это экстренный резерв при повреждении эпителия. В грубом приближении истощение ресурсов стволовых клеток — причина наступления аносмии с возрастом (пресбиосмия).

Видео:Обонятельные нервыСкачать

Обонятельные нервы

ГЛАВА II. Удивительные обонятельные нейроны

Много миллионов антенн

На 2,5 квадратных сантиметра обонятельного эпителия (рис. 5) приходится с десяток миллионов нейронов. Каждый зрелый нейрон обслуживают 15–30 ресничек, служащих для принятия, усиления и передачи химического сигнала. Они пробиваются из обонятельной булавы нейрона — окончания единственного дендрита нейрона. Благодаря этим ресничкам нейроны, спрятанные в эпителии, увеличивают площадь контакта с внешней средой, не подвергая себя лишнему воздействию. На мембранах ресничек находятся не только рецепторы, но и все детали классического сигнального каскада. Если правильность их установки или сборка цилий нарушается, то страдает обонятельная функция. Все компоненты для сборки и содержания приходят из цитоплазмы, поскольку в цилиях нет своих митохондрий и белоксинтезирующего аппарата.

Обонятельный тракт и треугольник

Рисунок 5. Выстилка носа (обонятельный эпителий). Изображение получено методом сканирующей электронной микроскопии. Помимо ресничек и булавы обонятельных нейронов (выделены зелёным цветом) видны мироворсинки опорных и микроворсинчатых клеток (выделены коричневым цветом).

Цитоплазму и цилии связывает система интрафлаггелярного транспорта (ИФТ) (от лат. intra — внутри и flagellum — бич, жгут). В заметке Кейта Козмински, который, будучи аспирантом 30 лет назад изучал ИФТ, можно узнать о хитросплетениях исследований и их возрождении [22]. Другая основательная статья о роли этой системы была опубликована в 2002 году [23]. Основные участники системы — ИФТ-субкомплексы А и В (рис. 6), моторные белки и октамерный комплекс белков ББСома (англ. BBSome) (рис. 6). Если какие-то детали выпадают, то развиваются цилиопатии. Это гетерогенная группа патологических состояний, среди которых присутствует и потеря обоняния. К сожалению, из-за повсеместности цилий (они есть на поверхности очень многих клеток в организме) одновременно нарушается работа сразу нескольких органов (почки, печень, различные протоки и т.п.) [24].

Комплекс ББСомы назван так по синдрому Барде-Бидля (англ. Bardet-Biedl syndrome). Среди вторичных симптомов этого заболевания есть и аносмия. Правда, она развивается по-разному — в зависимости от поврежденных генов. Последствия одного из выявленных генетических вариантов — дезорганизация микротрубочек в цилиях [25], [26].

Обонятельный тракт и треугольник

Рисунок 6. Строение неподвижных ресничек (цилий) обонятельных нейронов. Основная структура цилий — это 9 дуплетов микротрубочек и две в центре. На схеме показано расположение ещё одного необходимого элемента — базального тельца в основании цилий, а также переходной зоны, в которой и обнаруживается белок CEP290. На рисунке обозначены участники системы интрафллаггелярного транспорта — это ИФТ-частицы, состоящие из ББСомы; моторные белки (кинезины и динеины, в зависимости от направления движения), ИФТ-субкомплексы А и В. ИФТ-частицы переносят компоненты микротрубочек, цилиарной мембраны и мембранных белков.

Природа цилиопатий в целом пока плохо изучена, но зато некоторые из них уже можно остановить. Сейчас открываются большие перспективы для лечения моногенных цилиопатий (заболеваний, вызванных мутацией в единственном гене). В нескольких исследованиях показали принципиальную возможность вернуть реснички к рабочему состоянию, доставив обонятельным нейронам корректную версию гена для синтеза ИФТ-88 (один из белков в составе ИФТ-частиц). Интраназальная эктопическая аденовирусная терапия не только помогла улавливать запахи на уровне периферии, но и восстановила аксонные связи в вышележащих отделах анализатора [27], то есть вернула возможность по-настоящему ощущать запах.

Есть и другой пример возможного подхода к лечению. Известно, что на входе в реснички работает центросомальный белок CEP290 (англ. Centrosomal Protein 290, который назван так по своей массе). При некоторых мутациях этот страж ворот становится резко избирательным, не позволяя G-белку занять своё место в сигнальном каскаде. Результат этого вполне ожидаемый — аносмия [28]. Для многих заболеваний проверка обоняния — доступный диагностический признак, как в случае амавроза Лебера — врожденного повреждения сетчатки. Один из 11 типов этого заболевания связан с мутацией CEP290, конкретно — десятый тип. А в марте 2020 года в Nature сообщили о старте «Brilliance» — клинического испытания технологии CRISPR/Cas9. Однократное субретинальное применение препарата должно помочь при лечении амавроза лебера 10 (LCA10) [29]. Наверное, если получится вернуть зрение, то и на возвращение обоняния тоже можно рассчитывать.

У подавляющего большинства с цилиями, к счастью, все в порядке. Что же дальше? Молекула, преодолев слой мукуса и приблизившись к цилиям, окажется в ловушке рецептора, и запустится сигнальный каскад.

Уловить и усилить

Связывание одоранта с рецептором запускает классический сигнальный каскад циклического аденозиномонофосфата (цАМФ) (рис.7) За активацией рецептора следует активация упомянутого G-белка, специфичного для обоняния — Golf; потом включается аденилатциклаза АЦIII, уровень цАМФ повышается, открываются ионные каналы, потенциал на мембране меняется, и по длинному аксону уходит потенциал действия (рис. 7). Потеря любого ключевого игрока сигнального каскада закономерно приводит к аносмии, но настолько радикальные мутации наблюдают скорее в лабораторных условиях, чем в клинике.

Обонятельный тракт и треугольник

Рисунок 7. Схема обонятельной трансдукции. Связывание молекулы одоранта с рецептором запускает процесс взаимодействия с G-белком, что активирует аденилатциклазу III. Образуется цАМФ, который открывает цАМФ-зависимые каналы. В клетку поступают Ca 2+ и Na + . Ca 2+ cвязывается с хлорным каналом, через который Cl − выходит из клетки.

адаптировано из [62] и [63]

Каскад вторичного посредника цАМФ — это распространенная в организме схема усиления сигнала. Впрочем, и здесь не без странностей. Внешний мир и обонятельный эпителий разделяют около 15 микрометров мукуса. А на его ионный состав влияет множество факторов, начиная с погоды за окном. Поэтому полагаться на привычный (например, как в зрении) входящий натриевый ток было бы опрометчиво. Альтернатива? Выпускать запасённый хлор Cl − , который активно поступает через белковые транспортеры в резервуар — сому и дендрит нейрона. Получается, кальций, попавший внутрь через неселективный катионный канал CNG (cyclic nucleotide-gated), открывает канал семейства аноктаминов (Anoctamin 2) для выхода хлора. 90% деполяризации нейрона — это выходящий хлорный ток [30]! Исследуя природу рассеянного склероза в одном из крупнейших центров в Швеции, SciLifeLab обнаружили, что у аноктамина-2 и антигена вируса Эпштейна-Барра есть похожие аминокислотные последовательности. Это называется молекулярной мимикрией, которая приводит к перекрёстной реактивности между антителами к каналу и вирусу. Пока предстоит выяснить, как провоцируемая вирусом иммунная реакции вписывается в этиопатогенез рассеянного склероза. Но известно, что канал представлен и в других частях мозга, а обсуждаемых антител в бляшках было подозрительно много. Можно предположить, что потеря обоняния и атака каналов в других областях могут выступать как более ранние диагностические проявления [31]. Вообще, о событиях трансдукции в обонянии известно давно. К 1990-ым годам провели ключевые эксперименты, определяющие роль обонятельного белка Golf и вторичных посредников [32]. Эти исследования и предвосхитили Нобелевскую премию 2004 года: благодаря страстной решительности учёных работа по поиску генов обонятельных рецепторов увенчалась успехом. Как вспоминают, это было поворотным событием в изучении обоняния.

Участвуют сотни

Говорят, чувство юмора — явление расплывчатое. Оно зависит как от наших собственных вкусов и привычек, так и от окружения. Конечно, нашему восприятию запахов не приписывают национальные ярлыки, но с обонянием похожая ситуация. Наши сенсорные клетки умело настраиваются на определённые ароматы: например, учатся быстрее сообщать, что в плите стоит вкусный пирог, или напротив, стараются не замечать некоторые запахи (скажете ли вы сейчас, чем пахнет ваш дом?), а мы сами в течение жизни учимся интерпретировать запахи как приятные или неприятные. Причины этого — в пластичности и субъективности обоняния, которое более других чувств связано с повседневными предпочтениями. Во-первых, запахи вокруг начинают влиять на наше восприятие ещё до рождения [33], [34]. Во-вторых, рецепторов (очень полиморфных) к одорантам почти четыре сотни, что не сравнить с известными со школы тремя видами колбочек. В 1991 году эта цифра, которая, например, для слона в пять раз больше, взволновала научное сообщество. А разговор о первичных запахах на какое-то время свели на нет.

Благодаря кропотливой работе американских учёных Линды Бак и Ричарда Аксель были определены гены, кодирующие одорант-связывающие рецепторы. Их коллега, Стюарт Фиерштайн вспоминает, что открытие генов — это результат упорства Бак, которая поставила на кон многое. Она присоединилась к лаборатории Акселя с однозначной целью — найти эти гены, которые к тому моменту безрезультатно искали несколько групп учёных. Три года работы без публикаций оказались оправданным риском. В недавно изданной книге Smellosophy (от сочетания слов smell — запах и philosophy — философия) можно найти и воспоминания самой Бак о проделанной работе, а также мысли других пионеров в области обоняния и запахов обоняния. Автор книги — историк науки Энн-Софи Барвич, которая собрала материалы о методологических и экспериментальных проблемах в исследованиях обоняния и рассказала историю их развития, начиная с античных времен. В эпиграфе — цитата Линды Бартошук: «Обоняние — это единственное чувство, для которого мы можем создать новый стимул, которого никогда не было на земле, и мы можем его воспринимать» .

«Smell — it’s the only sense for which we can create new stimulus that’s never been on the face of the earth and we can perceive it».

Кому-то это высказывание покажется спорным, но у него есть даже количественные аргументы. Недавно, коллектив из Монелловском Центре по изучению химических чувств и Brain Team из исследовательского подразделения Google сообщили (пока на стадии препринта [35]), что более 30 миллиардов молекул в мире могут быть запахами, а знаем и изучаем мы около 0,000002%! А значит, создавать новые ароматы можно ещё долго.

Пока, правда, непонятно, сколько существует способов сложить из миллиардов одорантов запахи таким образом, чтобы мы их восприняли. В 2014 году в прессе активно обсуждали, что это «больше триллиона» [36]. Однако есть основания подозревать, что это число несколько завышено [37].

Обонятельный тракт и треугольник

Рисунок 8. Одоранты могут активировать два типа рецепторов. Сигнальные вещества связываются со специализированными рецепторами (specialized receptors). Например, рецептор AgOr1 у малярийных комаров связывает компонент пота человека, 4-метилфенол [64]. В то же время, у другого типа рецепторов (generalist receptors) широкий репертуар связываемых одорантов. Благодаря им и работает комбинаторный принцип обоняния. На схеме справа по горизонтали — гипотетические ответы разных рецепторов на предъявляемые одоранты. Размер круга отражает силу ответа (рецепторные потенциал).

За определением генов последовал и принцип работы рецепторов — комбинаторный. Воспринимаем мы всё-таки гораздо больше, чем 400 запахов. Согласно комбинаторному принципу (рис. 8), молекула активирует несколько рецепторов, а большинство рецепторов реагируют на обширный репертуар одорантов («рецепторов широкого профиля»). Нашли и «рецепторы-специализаторы» для жизненно важных запахов, которые не следуют этому принципу (рис. 8). Но существование таких узконаправленных рецепторов у человека — предмет научного спора.

Ещё в 1967 году Джон Эймур , предрекая рецепторную природу, писал в Nature об избирательных аносмиях (selective/specific anosmia)— невосприимчивости к отдельным одорантам как о возможности разгадать обоняние. По аналогии с дальтонизмом рассчитывали установить первичные запахи и расшифровать обонятельный код [38].

Джон Эймур — один из лидеров науки об обонянии прошлого века. Среди его заслуг — создание стереохимической теории обоняния.

Оказывается, почти все мы аносмики к тем или иным веществам [39]. Однако обнаружить дефекты отдельных рецепторов сложно из-за их широкой настройки и многокомпонентности запахов. Более того, если считается, что сольная активация одного типа рецепторов не определяет запах, то как восприятие зависит от индивидуального набора генов? Выручило разнообразие резких и неприятных запахов вокруг, к которым некоторые оказывались подозрительно терпимы. Основы психофизической оценки масштабы избирательных аносмий заложили давно, а сейчас у нас есть и адекватные методы, чтобы соотнести особенности восприятия с генетической изменчивостью [40].

Самый известный пример — восприимчивость к стероиду андростенону. О том, как она зависит от генотипа рецептора OR7D4, уже писали [41]. От 20 до 30 процентов людей не находят его запах отталкивающими, а для других он будет иметь характерный запах пота. Полезно знать, что если вам явно неприятен запах андростенона, то возможно, и трюфели не вызовут у вас восторга. Считается, что присутствие этого стероида в составе делает из чувствительных к нему свиней умелых охотников. Другой случай: если ваше предложение пообедать блюдом вьетнамской кухни воспринимали с заметным отвращением, то возможно, вам повезло столкнуться с ещё одним частым аллельным вариантом. В составе ставших популярными супов фо есть кинза и кориандр. Это зелень и семена одного растения — Coriandrum sativum. Альдегиды — ключевые компоненты аромата кориандра — детектируются рецепторами по-разному. Полимофизм около гена рецептора OR6A2 связывают с наследственной составляющей неприязни к характерному для этих веществ мыльному запаху и вкусу , [42].

Вкус по большей мере определяется тем, что уловит обонятельный эпителий во время приема пищи. Это известно как обратное, или ретроназальное обоняние.

Удивительно, что часто нарушение функций рецептора меняет качественную оценку запаха, а не порог восприятия. Это, в свою очередь, помогло пересмотреть идею о том, что в обонятельном рецепторе есть нейроны, сообщающие о концентрации вещества. Просто в зависимости от концентрации активируются разные рецепторы. Но это также создает новые вопросы: как же формируется наше эмоциональное отношение к запахам? Между тем, практических последствий у таких исследований больше, чем кажется на первый взгляд. Например, одно из направлений Моннелевского центра — суметь замаскировать противный вкус жизненно важных лекарств. В частности, это исключительно важно при лечении детей. Также неприятный запах из-за метаболитов лекарств полноценно заслуживает упоминания в списке побочных эффектов. Индустрия химической и пищевой промышленности ещё больше ценит понимание коллективных антипатий и ищет способы их скрыть. Предположим, мы удовлетворили праздное любопытство и узнали, что личная неприязнь к меню соседа за столом или к самому соседу происходят из-за генетической изменчивости. Зачем же искать то, что может активировать или блокировать рецепторы? Причин много: например, есть обонятельные рецепторы, которые непосредственно участвуют в нейропередаче!

За рамками «обонятельных»

До этого речь шла только об обонятельных рецепторах из группы OR (odorant, or olfactory receptor). Однако, у человека точно есть ещё один тип рецепторов, которые были открыты в начале века в качестве участников нейромедиаторной системы следовых аминов (trace amines). Эти рецепторы, ассоциированные со следовыми аминами TAARs (trace amine-associated receptors) в носу связывают следующие соединения: триметиламин, путресцин, кадаверин. «Запах тухлой рыбы», «запах гниющего мяса», «самый мерзко пахнущий цветок» (речь идёт о раффлезии), — если бы не они, мы бы не знали таких ощущений. Хотя некоторые могут знать их по-другому. В ноябре сообщили, что в результате полногеномного поиска ассоциаций (Genome-Wide Association Studies) с участием более 9000 тысяч человек нашли вариант гена TAAR5, при котором триметиламин воспринимается как нейтральный или даже «картофельный» аромат. Искали в Исландии, где хаукарль — вяленое ферментированное мясо акулы с высоким содержанием аммиака и триметиламина — признают национальным деликатесом. Так намного легче поверить, что и другие достояния северной кухни, известные содержанием триметиламина — сюрстремминг и лютефиск — не у всех в черном списке [43]. Триметиламин у других видов — сигнальное вещество. Собственно, и наше отвращение — это наглядная иллюстрация тесной связи эмоций и химических стимулов. На таких примерах удобно изучать кодирование «отталкивающих» сигналов. Многие в курсе, что нейронные процессы в основном изучают на грызунах. Но вот интересный феномен — крысы, как и мы, ненавидят триметиламин, а мышей он привлекает!

Как и обещали, рассказываем, что же с там нейромедиаторной системой! В организме образуются и собственные лиганды к TAARs, следовые амины. Только их очень мало, отсюда и название, поэтому до обнаружения рецепторов дискуссии об их роли были не очень продуктивными. За последние двадцать лет TAARs обнаружили в структурах лимбической системы (она оркеструет эмоциональные реакции), базальных ганглиях, ретикулярной формации и других зонах. Сейчас ясно, что рецепторы вовлечены в работу дофаминовой, серотониновой систем, а также в процессы нейрогенеза. Это не только фундаментальные знания, но и реальный шаг к созданию новых лекарственных средств. Рецепторы следовых аминов активно исследуют в Институте трансляционной биомедицины СПбГУ под руководством Рауля Гайнетдинова. Одна из последних работ учёных лишний раз демонстрирует глубокую и недооценённую связь обоняния и физиологии. Оказалось, в основе положительного (антидепрессивного) действия антагонистов TAAR5 лежат непростые отношения обоняния и центральных структур, в которых присутствует этот рецептор [44]! Помимо возможного вклада в нейрохимию и фармакологию, эта работа неожиданным образом раскрывает и потенциал ароматерапии. Среди известных блокаторов рецептора TAAR5 числится Тимберол — синтетическое вещество с хвойным запахом, активно используемое в парфюмерии. В начале века почти одновременно с TAARs (их обнаружили в 2001 году), узнали и о существовании канонических обонятельных рецепторов в других тканях. Решают они, правда, более конкретные задачи. Вот в 2003 году в Science пишут о первом случае эктопической (от греч. еktos — вне и topos — место) экспрессии обонятельных рецепторов, т. е. за пределами свойственного им эпителия носа. Оказалось, что на мембране сперматозоидов есть рецептор hOR17-4 (OR1D2), участвующий в хемотаксисе при оплодотворении. А один из его агонистов — пахнущий ландышем бурженаль (bourgeonal) [45]. Новость растиражировали в медиапространстве с ожидаемым заголовками, не нуждающимися в цитировании. Сейчас известно, что бурженаль — единственный одорант, который мужчины детектируют при меньших концентрациях, чем женщины. (Про природу различий остроты нюха можно прочесть в PubMed [46]). Пусть пока это просто занимательный факт, но есть вероятность, что ему найдётся применение и в клинике — ухудшение нюха по отношению к бурженалю наблюдают в некоторых случаях идиопатического бесплодия [47].

Вообще, «обонятельных» рецепторов за пределами носа довольно много [48]. Это неудивительно, ведь по сути обоняние — это вид хеморецепции. Удобно использовать компоненты этой системы там, где требуется решить задачу распознавания малых молекул. Функциональный характер у рецепторов пока нашли не во всех тканях (а это тимус, поджелудочная железа, кожа, мышцы, сердце, печень, мозг). Но также, как и в случае с TAARs, за открытием агонистов и антагонистов следует создание новых эффективных средств. Например, рецептор OR2AT4 в кератиноцитах и волосяных фолликулах реагирует на терпеноид сандалового дерева, потенциально становясь новым средством для ускорения заживления шрамов и активации роста волос [49]. Но на этом хочется остановиться — о разнообразии рецепторов и их функций можно говорить долго. Возвращаемся к основной функции — обонятельной. Напрашивается закономерной вопрос: как именно нейроны выбирают себе рецепторы? Точнее, один тип рецептора из нескольких сотен.

Один нейрон – один рецептор

Вслед за поворотной работой 1991 года, оба будущих Нобелевских лауреата продолжили (и продолжают сейчас) исследовать нюх. Стало понятно, что если бы на мембране нейрона сидели множество разных типов рецепторов, то нейронный ответ на смесь запахов превратился бы в какофонию. Интуитивный принцип «один нейрон — один рецептор» был вскоре доказан сотрудником лаборатории Акселя. Вот только гены обонятельных рецепторов встречаются на каждой, кроме 20 и Y хромосомах [50]! Получается, что для выбора одного аллеля одного гена рецептора привлекается большое число удалённых участков генома. То, как эти контакты организуются в клетке, изучает 3D-эпигеномика, но сложные межхромосомные взаимодействия пока понимают не до конца [51]. Несколько лет назад появились данные об участии в эпигенетической регуляции «. греческих островов: Липcи, Сфактерия, Крит, Родос. ». Такое оригинальное название дали ключевым обонятельным энхансерам (регуляторные модули, активирющие транскрипцию генов). Про участие других регуляторных элементов недавно писали в Nature [52], [53]. В 2019 году главный приз ежегодной премии для молодых учёных, учреждённой Science и SciLifeLab, вручили за усовершенствование метода изучения организации хроматина: Hi-C, один из методов определения конформации хроматина, применили к индивидуальным диплоидным клеткам [54]. С помощью этого нового метода Dip-C (diploid chromosome conformation capture) визуализировали, как активные обонятельные гены взаимно подавляют транскрипцию остальных (рис. 9), [55].

Обонятельный тракт и треугольник

Рисунок 9. Межхромосомная агрегация генов обонятельных рецепторов OR (odorant receptors) и их энхансеров, построенная по данным метода Dip-C. Хромосомы обозначены разными цветами. Отдельно вынесена увеличенная визуализация наиболее плотного скопления генов OR и энхансеров: разные цвета обозначают принадлежность разным хромосомам; малые сферы представляют гены, а сферы с большим диаметром — энхансеры.

Свой рецептор (собранный из двух наборов хромосом) нейрон выбирает во время созревания. Это своеобразный «код принадлежности» нейрона. И он использует его дважды: рецепторы экспрессируются не только на цилиях, распознавая молекулы одорантов, но и на аксоне!

Видео:Обонятельный анализатор. Обонятельный нерв (Nervus olfactorius).Скачать

Обонятельный анализатор. Обонятельный нерв (Nervus olfactorius).

ГЛАВА III. Куда ведут нейроны?

Неразборчивая картография

Аксоны нейронов с одинаковыми обонятельными рецепторами встречаются в обонятельном клубочке, или гломеруле. Гломерулы — это составные единицы обонятельной луковицы (рис 10). На смесь запахов (которые мы называем одним словом: кофе, какао и т.д) реагируют определённые комбинации гломерул. Такие перекрывающиеся схемы активации называют «картами запахов», или «отпечатком запаха» (англ. «odor maps», или «odor images»).

Обонятельный тракт и треугольник

Рисунок 10. Схематическое изображение аксонов нескольких нейронов с одинаковыми обонятельными рецепторами, собранных в одном клубочке (гломеруле) обонятельной луковицы. Окраска обонятельного эпителия в носовых пазухах (рис. 11) отражает перекрывающиеся зоны экспрессии — рецепторы случайно занимают положение в пределах этих зон (т.е. они всё-таки следуют некоторым правилам топографической организации).

адаптировано из [66] и [67]

Нейроны с разными типами рецепторов в эпителии перемешаны, а ещё они постоянно обновляются. Как же тогда аксоны находят своих будущих соседей? Поиск своего клубочка задействует механизмы аксонального наведения (англ. axon guidance), в котором белки обонятельных рецепторов на аксонах и есть главные ориентиры. Изящное решение, но процесс этот довольно сложный. Много разных молекул участвует в формировании мозаики обонятельной луковицы: протокадегрины, цАМФ, белок ОМР — маркер обонятельных нейронов — и прочие компоненты. Эксперименты на мышах показывают, что потеря некоторых из них может нарушить правильную сортировку аксонов по клубочкам. Все детали ещё предстоит выяснить, но вклад вносят не только молекулярные взаимодействия. По дороге к клубочкам длинные аксоны нейронов пересекают продырявленную пластинку решётчатой кости (рис 11). Они проходят через неё в составе пучков, окружённых обволакивающими глиальными клетками (это и есть обонятельный нерв). К сожалению, «перерезка» аксонов костью при травмах головы грозит серьезными последствиями — аносмией или значительной гипосмией. Причина в том, что новые созревающие нейроны больше не могут добраться до гломерул обонятельной луковицы: им необходим «каркас» из существующих нейронов, который и разрушается при механических повреждениях.

Поиск своих позиций нейронами в процессе эмбриогенеза осуществляется ещё более запутанным путём, поэтому не станем описывать весь процесс в деталях. Но рассказывая об аносмии, нельзя не упомянуть одноименный гликопротеин — аносмин-1 (ген ANOS1). Раньше этот ген называли KAL1 — по синдрому Кальмана. Это заболевание, при котором нарушается половое созревание и развивается аносмия. Какая между ними связь? Нейроны, которые будут секретировать гонадотропин-рилизинг-гормон в гипоталамусе, добираются туда из обонятельной плакоды (производное эктодермы, из которой образуется обонятельный эпителий носа). Недавно удалось выяснить, что аносмин-1 — критический участник ангиогенеза в обонятельной луковице. Но ANOS1 — это один из 25 страдающих при синдроме Кальмана генов [52].

В клубочке сигнал с аксонов передаётся на дендриты митральных и пучковых клеток. Они потом отправят информацию о запахе на пирамидные клетки обонятельной коры. Схема работы обонятельной луковицы значительно усложняется из-за тормозных влияний клеток (перигломерулярных, клеток-зерен) и возвратных проекций (рис. 11).

Обонятельный тракт и треугольник

Рисунок 11. Относительное расположение решетчатой кости, обонятельного эпителия на гребнеобразных выростах решетчатой кости, носовые ходы/пазухи с выстилкой обонятельного эпителия (окраска по Ван-Гизону). Также на иллюстрации изображены аксоны обонятельных нейронов, поднимающиеся через продырявленную пластинку к обонятельной луковице. Сверху справа — схема нейронных связей в обонятельной луковице. На ней отмечены митральные и пучковые клетки — их дендриты идут из гломерул, а также изображены перигломерулярные и клетки-зерна, которые образуют синапсы с митральными и пучковыми клетками.

адаптировано из [68] и с сайта MedMule

Кажется, что если строение луковицы принципиально не нарушено, то обонятельный сигнал хоть как-то пойдет по системе дальше? Но не в том случае, если необходимый возбуждающий глутамат не выделяется из аксонных терминалей обонятельных нейронов.

Анальгетик с побочным эффектом

В 2006 году в Nature публикуют статью, которая вызвала ажиотаж среди крупнейших игроков фарминдустрии [56]. Предыстория у исследования была не менее захватывающей — её героем стал уличный артист из Пакистана, который мог ходить по горящим углям. Выяснили, что в его семье распространена мутация в гене SCN9A, кодирующем натриевый канал Nav1.7, которая нарушает проведение ноцицептивных (болевых) сигналов. А позже оказалось, что вместе с потерей болевых ощущений (полной!) приходит и аносмия: этот канал необходим для выделения медиатора в синапсе обонятельных нейронов. Удивительно, что парой лет раньше узнали о мутации этого гена с усилением функции (gain-of-function) и противоположным эффектом — болевой сверхчувствительностью и предполагаемой гиперосмией!

Видео:1. Обонятельный черепной нерв / Анатомия черепные нервы; ход обонятельного нерваСкачать

1. Обонятельный черепной нерв / Анатомия черепные нервы; ход обонятельного нерва

ГЛАВА IV. Заключительная

К чему ведут запахи?

Неудивительно, что мифы о простоте и примитивности обонятельного анализатора ещё с прошлого века не выдерживали критики. Организация обонятельных нейронных сетей интересовала и нобелевского лауреата Эдгара Д. Эдриана. А Уилфрид Ралл и Гордон Шеперед, стоящие у истоков вычислительной нейробиологии, проводили свои пионерские работы на обонятельной луковице [57].

Обонятельная информация из луковицы проходит через различные перипетии, попадая в лимбическую систему, миндалину, орбитофронтальную кору. Пути усложняются ещё больше, если запахи проходят «ретроназально», т. е. обратным путём, как это происходит с напитками и едой. Хочется надеяться, что в будущем кто-то возьмет на себя смелость рассказать о том, что известно о нейронных сетях обоняния за последние полвека. Интересно ведь узнать, как кофе приобретает свой аромат и почему прустовские мадленки появляются в каждом втором тексте о запахах и вкусах? Про многие необычные обонятельные нарушения известно намного меньше, а это — фантосмия (обонятельные галлюцинации), какосмия (навязчивое ощущение неприятных запахов), паросмия (нарушение интерпретации запахов) и другие расстройства. (Кстати, вы правы, если подозревали, что слово «аносмия» связано с носом только по сути. В его основе греческий корень «osme» — запах и приставка «an»). Почему понять работу обоняния так непросто? Много чисто технических причин. Во-первых, когда только обнаружили гены, казалось, что скоро будет доступен весь список пар рецептор—лиганд. Оказалось, что рецепторы очень неохотно занимают место на мембранах в несвойственных им клетках (большинство нуждается в специальных белковых проводниках [58]. Во-вторых, по сравнению со зрительными экспериментами, контролировать подачу запахов куда сложнее. Вдобавок к этому, адаптация к запахам наступает очень быстро. Это явление привыкания, которое нам известно на бытовом уровне, и оно сильно ограничивает время экспериментов. И ещё одно: грантовые организации долгое время с недоверием смотрели на исследования обоняния, пренебрегая их значением. К сожалению, это гармонирует и со взглядами широкой публики. В одном из опросов 2011 года половина молодых людей ответила, что охотнее готовы расстаться с обонянием, чем с техникой (подробнее читайте в статье The Truth About Youth на странице 6). Полиморфные гены, постоянная перестройка сетей под новые запахи — всё ведет к одному результату: мы исключительно субъективно воспринимаем ароматы (представьте тысячи вариантов сине-черно-бело-золотого платья). Так ведь даже интереснее! Стоит понимать, что некоторые споры про вкус и запах разрешить в бытовых условиях не получится. И не нужно забывать, что среди нас живут те, кто не только оказывается лишен ежедневных аромаудовольствий, но и могут оказаться перед лицом серьезных заболеваний.

Стоит признать, многие важные вопросы остались за кадром. Почему работает васаби-будильник, заслуживший Игнобелевскую премию 2011 года? «Запахи» узнаёт не только обонятельный нерв, но также и тройничный! Аллилизотиоцианат васаби (это вещество есть и в горчице) связывается с ваниллоидными рецепторами соматосенсорных нейронов в обонятельной полости [58]. Благодаря тройничной иннервации мы определяем раздражающие, а также тёплые и холодные запахи. А про неосознаваемое влияние одорантов мы знаем ещё меньше.

На заре оцифровки

Монеллевский центр (США), который упоминался несколько раз, — один из ведущих центров по изучению химических чувств. Они стараются помогать аносмикам и развивают как фундаментальные, так и практические направления. А вот исследовательская группа института Вейцмана (Израиль) делает всё возможное, чтобы мы не только были с обонянием на «ты», но и научились управлять запахами. Например, в 2012 году они смогли создать «белый запах» — несколько неповторяющихся комбинаций из более 30 компонентов испытуемые определяли как одинаковый неидентифицируемый запах. Предлагали применять его для маскировки неприятных ароматов. Кажется, это пригодилось бы не только авиакомпаниям, периодически возвращающимся самолеты на проветривание. Ещё они научились «измерять запахи». Статья, недавно опубликованная в Nature, намекает на стремительное приближение пахнущих сообщений и фотографий (можно прочитать краткую выжимку из статьи от авторов). Из-за стволовых клеток обонятельную систему любят разбирать на запасные части [59]. Ещё её эксплуатируют как модельный объект. Но, к счастью, есть и желающие помочь людям, лишившимся обоняния или никогда не знавших о запахах. А для всех тех, кто не верит в роль запахов, Рэндалл Рид, один из ведущих нейробиологи обоняния, напоминает: пить кофе с крышкой на стакане почти как вино через соломинку — затея сомнительная, ведь упускаются ценные ароматы. Если загадки обоняния вас несколько заинтересовали, то можно обратиться к недавно переведённой книге профессора Паоло Пелоси, одного из последователей Джона Эймура: «Обоняние. Увлекательное погружение в науку о запахах» [60]. Среди детективных историй от первого лица и живых научно-насыщенных описаний механизмов обоняния разных видов есть вопросы, которые достойны особого внимания: поводы вернуться к обонянию представятся ещё не раз.

За помощь в подготовке иллюстраций автор выражает благодарность Глебу С. Русину.

Видео:Обонятельный нерв-1 пара чмн (путь,корковый центр,симптомы поражения)Скачать

Обонятельный нерв-1 пара чмн (путь,корковый центр,симптомы поражения)

Органы чувств. Орган зрения, обоняния, вкуса, слуха и равновесия

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Глава 7. Органы чувств

  • Проводящий путь органа зрения
  • Развитие органа зрения в онтогенезе
  • Проводящий путь органа слуха и равновесия
  • Развитие органа слуха и равновесия в онтогенезе

Общий покров (кожа)

ОРГАНЫ ЧУВСТВ

Взаимодействие организма с внешней средой осуществляют органы чувств, к которым относят органы зрения, слуха, равновесия, вкуса, обоняния и осязания (кожного чувства). Органы чувств воспринимают энергию внешнего воздействия (свет, звуки, запахи и др.), образуют нервные импульсы, которые по нервным волокнам (проводящим путям) поступают в мозг, где происходит высший анализ. Поэтому органы чувств вместе с их проводящими путями и соответствующими центрами в коре большого мозга объединяют под общим названием – анализаторов. Каждый анализатор состоит из периферической части (нервные окончания, чувствительные клетки), которая воспринимает энергию внешнего раздражения и перерабатывает ее в нервный импульс проводящего пути, по которому нервный импульс следует к нервному центру, и коркового конца анализатора, расположенного в коре большого мозга, где происходит высший анализ.

ОРГАН ОБОНЯНИЯ

Орган обоняния (organum olfactorium) располагается в слизистой оболочке верхней носовой раковины и носовой перегородки на этом же уровне. Обонятельные рецепторные клетки расположены между поддерживающими клетками и рядом с базальными эпителиоцитами (рис. 236). Обонятельные рецепторные клетки на своей свободной поверхности имеют подвижные обонятельные реснички.

Обонятельный тракт и треугольник

Рис. 236. Схема ультрамикроскопического строения обонятельного эпителия: 1 – микроворсинки; 2 – пузырьки; 3 – обонятельная булава; 4 – замыкательная пластинка (десмосома); 5 – тело обонятельной нейросенсорной клетки; 6 – поддерживающая клетка; 7 – эндоплазматическая сеть; 8 – базальная мембрана; 9 – аксоны обонятельных нейросенсорных клеток, образующие обонятельные нити (по В.Г. Елисееву и др.)

Центральные отростки (аксоны) обонятельных клеток проходят между поддерживающими клетками, собираются в обонятельные нити (нервы), которые проходят в полость черепа через отверстия решетчатой пластинки решетчатой кости и направляются к обонятельной луковице на основании лобной доли головного мозга. Молекулы пахучих веществ предварительно растворяются в секрете обонятельных желез, попадают на реснички, что вызывает образование нервного импульса, который по обонятельным нервам передается к обонятельным луковицам, где залегают II нейроны. Аксоны клеток II нейронов образуют обонятельный тракт и направляются в обонятельный треугольник, затем проходят через переднее продырявленное вещество и достигают коркового центра обонятельного анализатора, который располагается в крючке и парагиппокампальной извилине полушария головного мозга (рис. 237).

Обонятельный тракт и треугольник

Рис. 237. Проводящий путь органа обоняния: 1 – верхняя носовая раковина; 2 – обонятельные нервы (I пара); 3 – обонятельная луковица; 4 – обонятельный тракт; 5 – подмозолистое поле; 6 – поясная извилина; 7 – мозолистое тело; 8 – сосцевидное тело; 9 – свод; 10 – задний таламус; 11 – зубчатая извилина; 12 – парагиппокампальная извилина (извилина гиппокампа); 13 – крючок

В онтогенезе человека орган обоняния закладывается в эмбриональной нервной пластинке на границе с эктодермой. Периферическая часть будущего органа обоняния отделяется от нервной пластинки в виде парных обонятельных ямок и затем вторично соединяется с центральной частью анализатора при помощи обонятельного нерва (нитей). Клетки обонятельной ямки дифференцируются на обонятельные и поддерживающие клетки.

ОРГАН ВКУСА

Орган вкуса (organum gustus) имеет эктодермальное происхождение. Вкусовые почки развиваются из элементов эмбриональной нервной ткани. Уже в период своего образования они связаны с окончаниями соответствующих нервов (лицевой, языкоглоточный, блуждающий). Зачатки вкусовых почек вдаются в поддерживающий эпителий сосочка и постепенно принимают вид луковиц.

Орган вкуса у человека представлен вкусовыми почками (около 2000), расположенными в многослойном эпителии желобовидных, листовидных и грибовидных сосочков языка, а также слизистой оболочки нёба, зева и надгортанника. Вкусовые почки имеют эллипсовидную форму, состоят из плотно прилежащих друг к другу рецепторных (вкусовых) и опорных клеток (рис. 238), в основании которых расположены базальные клетки. На вершине каждой вкусовой почки имеется вкусовое отверстие (вкусовая пора), которая ведет в маленькую вкусовую ямку, образованную верхушками вкусовых клеток. На поверхности каждой вкусовой клетки, обращенной в сторону вкусовой ямки, имеются микроворсинки, вступающие в контакт с растворенными веществами.

Обонятельный тракт и треугольник

Рис. 238. Строение вкусовой почки (схема): 1 – вкусовая клетка; 2 – поддерживающая клетка; 3 – вкусовая пора; 4 – микроворсинки; 5 – эпителиальные клетки; 6 – нервные окончания; 7 – нервное волокно

Растворенное вещество проникает во вкусовые почки через вкусовую пору, возбуждает вкусовые клетки. Это возбуждение передается прилежащим нервным окончаниям, в которых генерируется нервный импульс.

По нервным волокнам, которые заходят во вкусовую почку, проходят вдоль боковых поверхностей поддерживающих клеток и заканчиваются на боковой поверхности рецепторных вкусовых клеток, образуя с ними синапсы, нервный импульс поступает в мозг (рис. 239).

Нервный импульс от передних 2 / 3 языка передается по нервным волокнам язычного нерва, а затем барабанной струны лицевого нерва; от желобовидных сосочков, мягкого неба и небных дужек – по волокнам языкоглоточного нерва, от надгортанника по блуждающему нерву. Тела I нейронов залегают в соответствующих узлах черепных нервов, их аксоны направляются в составе указанных нервов в чувствительное ядро одиночного пути, расположенное в продолговатом мозге. Центральные отростки клеток этого ядра направляются в таламус. Аксоны нейронов таламуса идут к корковому концу вкусового анализатора, расположенному в коре парагиппокампальной извилины, крючка и гиппокампа.

Обонятельный тракт и треугольник

Рис. 239. Проводящий путь органа вкуса: 1 – задний таламус; 2 – волокна, соединяющие таламус и крючок; 3 – волокна, соединяющие ядро одиночного пути и таламус; 4 – ядро одиночного пути; 5 – вкусовые волокна в составе верхнего гортанного нерва (блуждающий нерв); 6 – вкусовые волокна в составе языкоглоточного нерва; 7 – вкусовые волокна в составе барабанной струны; 8 – язык; 9 – крючок

ОБЩИЙ ПОКРОВ (КОЖА)

Кожа (cutis) выполняет защитную, терморегуляционную, дыхательную, обменную функции. Железы кожи вырабатывают пот, кожное сало. Кожа участвует в обмене витаминов, особенно витамина D под влиянием ультрафиолетовых лучей. Площадь кожного покрова взрослого человека достигает 1,5–2м 2 . Эта поверхность является рецепторным полем тактильной, болевой, температурной, кожной чувствительности. В зависимости от характера раздражителя в коже различают терморецепторы, механорецепторы и ноцирецепторы, которые воспринимают изменение температуры, прикосновение к коже, ее сдавливание, болевые раздражения. У кожи выделяют поверхностно лежащий эпидермис и расположенную под ним дерму (собственно кожу).

Эпидермис – это многослойный плоский ороговевающий эпителий, толщина которого (0,03–1,5 мм) зависит от выполняемой функции. Так, на участках, подвергающихся постоянному механическому давлению (ладони, подошвы), его толщина больше, чем на груди, животе, бедре, плече, предплечье, шее. Эпидермис расположен на базальной мембране (рис. 240). На ней лежит базальный слой, среди клеток которого имеются пигментные эпителиоциты, богатые зернами пигмента меланина (меланоциты), от количества которого зависит цвет кожи. Над базальным слоем расположен шиповатый слой клеток, которые соединяются между собой множеством отростков.

Обонятельный тракт и треугольник

Рис. 240. Строение кожи (А): 1 – эпидермис; 2 – роговой слой; 3 – базальный слой; 4 – сосочковый слой; 5 – сальная железа; 6 – соединительнотканные волокна (коллагеновые, эластические, ретикулярные) и клетки; 7 – пучки миоцитов; 8 – волосяная луковица; 9 – дольки жировой ткани; 10 – сетчатый слой; 11 – корень волоса; 12 – потовая железа

Обонятельный тракт и треугольник

Рис. 240. Строение эпидермиса (Б): 1 – роговой слой; 2 – блестящий слой; 3 – зернистый слой; 4 – шиповатый слой; 5 – базальный (цилиндрический слой) (по В. Баргману)

Базальный и шиповатый слои функционально объединены в ростковый слой. Выше расположен зернистый слой, состоящий из нескольких слоев уплощенных клеток, содержащих крупные зерна кератогиалина, который по мере продвижения клеток в верхние слои превращается в кератин. Над зернистым лежит блестящий слой, образованный 3–4 слоями плоских клеток, не имеющих ядер, богатых белком элеидином, хорошо преломляющим свет. Поверхностный роговой слой представляет собой слой роговых чешуек, содержащих белок кератин и пузырьки воздуха. Этот слой водонепроницаемый, отличается плотностью, упругостью и, что особенно важно, через него не проникают микроорганизмы. Роговые чешуйки слущиваются и заменяются новыми, которые подходят к поверхности из глубже лежащих слоев клеток. Эти клетки в процессе миграции на поверхность постепенно ороговевают.

Дерма, или собственно кожа, толщиной 1–2,5 мм образована соединительной тканью. В ней различают сосочковый и сетчатый слои. Сосочковый слой находится под базальной мембраной эпидермиса. Он сформирован рыхлой волокнистой неоформленной соединительной тканью, которая расположена в виде сосочков, внедряющихся в эпидермис и прогибающих его базальную мембрану. В этом слое много кровеносных сосудов, которые питают эпидермис. Благодаря наличию сосочков на поверхности кожи видны гребешки, разделенные бороздками кожи. Гребешки, соответствующие возвышениям сосочков дермы, и бороздки между ними формируют, особенно на ладонях и стопах, строго индивидуальный сложный рисунок кожной поверхности, сохраняющийся в течение всей жизни человека. Строение кожного рельефа широко используется для идентификации личности в криминалистике. Изучение деталей рельефа кожи (папиллярных линий и узоров) получило название дерматоглифики.

В сосочковом слое имеются миоциты, связанные с волосяными луковицами. В дерме лица, мошонки, соска молочной железы, тыльной поверхности конечности имеются самостоятельные пучки миоцитов, при сокращении которых возникает хорошо известная картина – «гусиная кожа».

Под сосочковым слоем находится сетчатый слой, который состоит из соединительной ткани, содержащей пучки коллагеновых волокон, образующих сеть. В сетчатом слое, наряду с коллагеновыми волокнами, имеются эластические и небольшое количество ретикулярных волокон. В сетчатом слое залегают корни волос, потовые и сальные железы. Пучки коллагеновых волокон сетчатого слоя проходят в подкожную основу (клетчатку), содержащую жировую ткань. Этот слой играет важную роль в терморегуляции и является жировым депо организма. Волосы являются производным эпидермиса. Волосы имеются почти на всей коже, исключение составляют ладони, подошвы, переходная часть губ, головка полового члена и малых половых губ. Наибольшее число волос обычно на голове. Характер оволосения зависит от пола, возраста и относится к вторичным половым признакам.

В период полового созревания начинается усиленный рост волос в подмышечных впадинах, на лобке; у мужчин – на лице, конечностях, груди, животе. Различают три типа волос: длинные покрывают голову, щетинистые располагаются на бровях, ресницах, в преддверии полости носа и наружном слуховом проходе; пушковые – на остальной поверхности тела.

Волос имеет выступающий над поверхностью кожи стержень и корень, лежащий в толще кожи (рис. 241). Корень волоса находится в волосяном мешке (фолликуле), образованным эпителиальным (корневым) влагалищем и соединительнотканной сумкой волоса. К сумке прикрепляется мышца – подниматель волоса. В сумку открывается сальная железа. Сокращаясь, мышца поднимает волос, сдавливает сальную железу, благодаря чему выделяется ее секрет. Наружное корневое влагалище кнаружи продолжается в эпидермис, в области сосочка волоса оно истончается, в нем остается лишь ростковый слой, окружающий сосочек. Внутреннее корневое влагалище, расположенное между волосом и наружным корневым влагалищем, образовано эпителиальными клетками, которые окружают корень волоса наподобие муфты.

Обонятельный тракт и треугольник

Рис. 241. Схема строения волоса: 1 – волосяная сумка; 2 – кора волоса; 3 – мозговое вещество волоса; 4 – кутикула; 5 – наружное корневое влагалище; 6 – два слоя внутреннего корневого влагалища; 7 – волосяная воронка; 8 – базальный (ростковый) слой эпидермиса; 9 – роговой слой эпидермиса; 10 – сальная железа; 11 – мышца, поднимающая волос; 12 – луковица волоса; 13 – сосочек волоса (по В.Г. Елисееву и др.)

Корень волоса переходит в расширенную вoлocянyю луковицу, в которую впячивается соединительнотканный сосочек волоса, богатый кровеносными капиллярами, питающими луковицу. Над сосочком расположен матрикс, который представляет собой ростковую часть волоса. За счет деления клеток матрикса, которые передвигаются вверх, волос растет. Между эпителиоцитами матрикса залегают меланоциты, синтезирующие пигмент меланин.

Стержень волоса состоит из мозгового и коркового вещества. Корковое вещество образовано плоскими роговыми чешуйками, заполненными, в основном, кератином. Кроме того, в них содержатся зерна пигмента и пузырьки воздуха. Клетки мозгового вещества лежат друг на друге, они также содержат пузырьки воздуха и зерна пигмента.

С возрастом количество пузырьков воздуха увеличивается, а синтез пигмента постепенно прекращается, волосы седеют. Корковое вещество снаружи покрыто кутикулой, образованной плоскими кутикулярными клетками. Волосы сменяются в сроки от 2–3 месяцев до 2–3 лет.

Ноготь, подобно волосам, также является производным эпидермиса. Ноготь представляет собой роговую пластинку, лежащую на соединительнотканном ногтевом ложе, ограниченную у основания и боков ногтевыми валиками. Ноготь впячивается в щели, расположенные между ложем и валиками. В задней ногтевой щели залегает корень ногтя, тело лежит на ногтевом ложе, а свободный край выступает за его пределы. Ноготь растет за счет деления клеток росткового слоя эпителия ногтевого ложа в области корня. Делящиеся клетки, подобно эпителиоцитам эпидермиса, продвигаясь вперед, ороговевают.

Железы кожи. К ним относятся потовые, сальные и молочные железы. Количество потовых желез около 2 – 2,5 млн, они представляют собой простые трубчатые железы. Их начальные отделы закручиваются, образуя клубочки. Длинный выводной проток, извиваясь, прободает кожу и открывается на ее поверхности в потовой поре.

Сальные железы – простые альвеолярные, располагаются на границе между сосочковым и сетчатым слоями дермы. Сальные железы отсутствуют лишь на ладонях и подошвах, наибольшее количество их на голове, лбе, щеках, подбородке. Железа состоит из альвеолярного начального отдела и короткого выводного протока, который открывается в волосяной мешочек. В участках кожи, не имеющих волос (головка полового члена, переходная часть губы), протоки сальных желез открываются на поверхности кожи.

Молочная (грудная) железа расположена на передней поверхности большой грудной мышцы. На передней поверхности железы находится пигментированный сосок (на его поверхности открывается 10–15 млечных пор), окруженный пигментированным сосковым кружком (рис. 242). В коже соска и околососкового кружка имеются миоциты, при сокращении которых сосок напрягается.

Молочная железа является измененной потовой железой, у мужчин железа недоразвита. У взрослой женщины она состоит из 15–20 долей, между которыми располагается жировая и рыхлая волокнистая соединительная ткань. Каждая доля – это сложная альвеолярная железа, выводной проток которой направляется радиально к соску (рис. 243).

Обонятельный тракт и треугольник

Рис. 242. Молочная (грудная) железа, вид спереди: 1 – тело молочной железы; 2 – околососковый кружок молочной железы; 3 – сосок молочной железы

Обонятельный тракт и треугольник

Рис. 243. Молочная (грудная) железа, сагиттальный разрез: 1 – сосок молочной железы; 2 – млечные протоки; 3 – тело молочной железы; 4 – грудная фасция; 5 – большая грудная мышца

Не доходя до соска, проток, расширяясь, образует млечный синус. Однако начальные отделы железы некормящей женщины представляют собой лишь млечные альвеолярные протоки.

При беременности на концах протоков формируются альвеолы, образованные одним слоем цилиндрических клеток. В период кормления альвеолы молочных желез продуцируют молоко. Альвеолы образованы цилиндрическими клетками – лактоцитами, лежащими на базальной мембране. Лактоциты окружены корзинчатыми миоэпителиоцитами, расположенными на базальной мембране. Их сокращение приводит к выдавливанию молока в протоки. Секреция молока стимулируется лактотропным гормоном гипофиза. После окончания периода кормления ребенка происходит постепенное обратное развитие молочной железы.

У новорожденной девочки секреторные отделы почти не развиты. Лишь имеется недоразвитая система протоков. В препубертатном периоде быстро растет жировая ткань, к моменту половой зрелости железа становится округлой, но увеличение ее происходит, в основном, за счет жировой ткани.

🎦 Видео

Зрительный анализатор. Зрительный нерв (Nervus opticus).Скачать

Зрительный анализатор. Зрительный нерв (Nervus opticus).

PRОСТО О СЛОЖНОМ. Анатомия ЧМН. Обонятельный нерв. Выпуск 1Скачать

PRОСТО О СЛОЖНОМ. Анатомия ЧМН. Обонятельный нерв. Выпуск 1

ОБОНЯТЕЛЬНЫЙ НЕРВСкачать

ОБОНЯТЕЛЬНЫЙ НЕРВ

Черепные нервы.Топография черепных нервов.Черепно-мозговые нервы часть 1Скачать

Черепные нервы.Топография черепных нервов.Черепно-мозговые нервы часть 1

Анатомия всех черепно- мозговых нервов. Аnatomy of all cranial nervesСкачать

Анатомия всех черепно- мозговых нервов. Аnatomy of all cranial nerves

Лаб работа -12(1-4 ЧМН) НейроанатомияСкачать

Лаб работа -12(1-4 ЧМН) Нейроанатомия

Нейроанатомия-Лабораторная Работа 1(отделы головного мозга)не полностьюСкачать

Нейроанатомия-Лабораторная Работа 1(отделы головного мозга)не полностью

Анализаторы. Проводящие пути анализаторов. Analyzer pathwaysСкачать

Анализаторы. Проводящие пути анализаторов. Analyzer pathways

Орган обонянияСкачать

Орган обоняния

Обонятельный нерв за 1 минуту | Путь к мозгу (схематично) | MedanatfarmСкачать

Обонятельный нерв за 1 минуту | Путь к мозгу (схематично) | Medanatfarm
Поделиться или сохранить к себе: