Центр описанной в треугольник окружности всегда лежит внутри треугольника

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Какое из следующих утверждений верно?

1) Центр описанной около треугольника окружности всегда лежит внутри этого треугольника.

2) В параллелограмме есть два равных угла.

3) Площадь прямоугольного треугольника равна произведению длин его катетов.

В ответ запишите номер выбранного утверждения.

Рассмотрим каждое из утверждений:

1) «Центр описанной около треугольника окружности всегда лежит внутри этого треугольника» — неверно, центр описанной вокруг прямоугольного треугольника окружности, лежит на его стороне.

2) «В параллелограмме есть два равных угла» — верно, в параллелограмме есть 2 пары равных углов.

3) «Площадь прямоугольного треугольника равна произведению длин его катетов» — неверно, площадь прямоугольного треугольника равна половине произведения длин его катетов.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Задание 20. Какое из следующих утверждений верно?

1) Центр описанной около треугольника окружности всегда лежит внутри этого треугольника.

2) Сумма углов равнобедренного треугольника равна 180 градусам.

3) Диагонали ромба равны.

1) Не обязательно, есть тупоугольные треугольники, у которых центр описанной окружности вне его.

2) Да, сумма углов любого треугольника, в том числе и равнобедренного, равна 180°.

3) Нет, диагонали ромба в общем случае не равны.

Видео:Центр описанной около треугольника окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Центр описанной около треугольника окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Центр описанной в треугольник окружности всегда лежит внутри треугольникаСерединный перпендикуляр к отрезку
Центр описанной в треугольник окружности всегда лежит внутри треугольникаОкружность описанная около треугольника
Центр описанной в треугольник окружности всегда лежит внутри треугольникаСвойства описанной около треугольника окружности. Теорема синусов
Центр описанной в треугольник окружности всегда лежит внутри треугольникаДоказательства теорем о свойствах описанной около треугольника окружности

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Видео:Описанная и вписанная окружности треугольникаСкачать

Описанная и вписанная окружности треугольника

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Полученное противоречие и завершает доказательство теоремы 2

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Видео:Центр описанной окружности равнобедренного треугольника ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Центр описанной окружности равнобедренного треугольника ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Центр описанной в треугольник окружности всегда лежит внутри треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Центр описанной в треугольник окружности всегда лежит внутри треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Центр описанной в треугольник окружности всегда лежит внутри треугольникаВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаЦентр описанной в треугольник окружности всегда лежит внутри треугольникаОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиЦентр описанной в треугольник окружности всегда лежит внутри треугольникаЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиЦентр описанной в треугольник окружности всегда лежит внутри треугольникаЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовЦентр описанной в треугольник окружности всегда лежит внутри треугольника
Площадь треугольникаЦентр описанной в треугольник окружности всегда лежит внутри треугольника
Радиус описанной окружностиЦентр описанной в треугольник окружности всегда лежит внутри треугольника
Серединные перпендикуляры к сторонам треугольника
Центр описанной в треугольник окружности всегда лежит внутри треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаЦентр описанной в треугольник окружности всегда лежит внутри треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиЦентр описанной в треугольник окружности всегда лежит внутри треугольника

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиЦентр описанной в треугольник окружности всегда лежит внутри треугольника

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиЦентр описанной в треугольник окружности всегда лежит внутри треугольника

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовЦентр описанной в треугольник окружности всегда лежит внутри треугольника

Для любого треугольника справедливы равенства (теорема синусов):

Центр описанной в треугольник окружности всегда лежит внутри треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаЦентр описанной в треугольник окружности всегда лежит внутри треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиЦентр описанной в треугольник окружности всегда лежит внутри треугольника

Для любого треугольника справедливо равенство:

Центр описанной в треугольник окружности всегда лежит внутри треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Центр описанной в треугольник окружности всегда лежит внутри треугольника.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Центр описанной в треугольник окружности всегда лежит внутри треугольника

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

💡 Видео

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

ОГЭ/База Все прототипы задач на окружностиСкачать

ОГЭ/База Все прототипы задач на окружности

Окружность и треугольникСкачать

Окружность и треугольник

Вписанная окружностьСкачать

Вписанная окружность

2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

19 ЗАДАНИЕ ОГЭ ДИАГОНАЛИ РОМБА РАВНЫ?Скачать

19 ЗАДАНИЕ ОГЭ ДИАГОНАЛИ РОМБА РАВНЫ?

5.5.5. Задачи на верность утверждений. Решение геометрических задач. Подготовка к ОГЭ по математикеСкачать

5.5.5. Задачи на верность утверждений. Решение геометрических задач. Подготовка к ОГЭ по математике

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.
Поделиться или сохранить к себе: