Пример решения задачи по определению нормального, касательного и модуля полного ускорения точки, а также, угла с вектором скорости, точки, движущейся по окружности заданного радиуса и известному закону заданному уравнением.
- Задача
- Решение
- Нормальное ускорения точки движущейся по окружности радиусом
- Нормальное ускорение точки, движущейся по окружности радиусом r=4 м, задается уравнением an=A+Bt+Ct2 (А=1 м/с2, B=6 м/с3, С=3 м/с4) Готовое решение: Заказ №8106
- Описание и исходные данные задания, 50% решения + фотография:
- 🎬 Видео
Видео:Физика - движение по окружностиСкачать
Задача
Точка движется по окружности радиуса R=4 м, закон ее движения определяется уравнением s=4,5t 3 ( s в метрах, t в секундах).
Определить модуль полного ускорения и угол φ его с вектором скорости в тот момент t1, когда скорость будет равна 6 м/с (рисунок 1.6).
Видео:Рассмотрение темы: "Тангенциальное, нормальное и полное ускорение"Скачать
Решение
Дифференцируя s по времени, находим модуль вектора скорости точки
Подставляя в это выражение значение скорости, получим 6=13,5t1 2 , откуда находим
Касательное ускорение для любого момента времени равно
Так как для окружности радиус кривизны ρ=R, то нормальное ускорение для любого момента времени равно
Модуль вектора полного ускорения точки равен
Угол между вектором полного ускорения и вектором скорости определим следующим образом:
Видео:Лекция 6.5 | Нормальное и тангенциальное ускорение | Александр Чирцов | ЛекториумСкачать
Нормальное ускорения точки движущейся по окружности радиусом
точка движется окружности радиусом
Точка движется по окружности радиусом R=30 см с постоянным угловым ускорением ε. Определить тангенциальное ускорение аτ точки, если известно, что за время t=4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение an=2,7 м/с 2 .
Материальная точка движется по окружности радиуса R = 2 м согласно уравнению S = At+Bt 3 , где А = 8 м/с; В = –0,2 м/с 3 . Найти скорость v, тангенциальное at, нормальное an и полное а ускорения в момент времени t = 3 с.
Точка движется по окружности радиусом R = 15 см с постоянным тангенциальным ускорением аτ. К концу четвертого оборота после начала движения линейная скорость точки v1 = 15 см/с Определите нормальное ускорение аn2 точки через t2 = 16 с после начала движения.
Нормальное ускорение точки, движущейся по окружности радиусом r = 4 м, задается уравнением аn = А + Bt + Ct 2 (А = 1 м/с 2 , В = 6 м/с 3 , С = 9 м/с 4 ). Определите: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время t1 = 5 с после начала движения; 3) полное ускорение для момента времени t2 = 1 с.
Точка движется по окружности радиусом 4 м. Закон ее движения выражается уравнением s = 8 – 2t 2 , м. Определить: а) в какой момент времени нормальное ускорение точки будет равно 9 м/с 2 ; б) чему равны скорость, тангенциальное и полное ускорения точки в этот момент времени?
Точка движется по окружности радиусом R = 4 м так, что в каждый момент времени ее нормальное и тангенциальное ускорения равны по модулю. В начальный момент времени t = 0 скорость точки V0 = 0,2 м/с. Найти скорость точки в момент времени t1 = 10 c.
Точка движется по окружности радиусом R = 8 м. В некоторый момент времени нормальное ускорение точки равно 4 м/с 2 , вектор полного ускорения образует в этот момент с вектором нормального ускорения угол 60°. Найти линейную скорость и тангенциальное ускорение точки.
Точка движется по окружности радиусом 0,4 м согласно уравнению S = 2-cos2t. Определить нормальное ускорение точки в момент времени t = π/4 с?
Точка движется по окружности радиусом R = 10 см с постоянным тангенциальным ускорением аτ. Найти тангенциальное ускорение аτ точки, если известно, что к концу пятого оборота после начала движения линейная скорость точки v = 79,2 см/с.
Точка движется по окружности радиусом R = 10 см с постоянным тангенциальным ускорением аτ. Найти нормальное ускорение аn точки через время t = 20 с после начала движения, если известно, что к концу пятого оборота после начала движения линейная скорость точки v = 10 см/с.
Точка движется по окружности радиусом R = 2 см. Зависимость пути от времени дается уравнением s = Ct 3 , где С = 0,1 см/с 3 . Найти нормальное an и тангенциальное aτ ускорения точки в момент, когда линейная скорость точки v = 0,3 м/с.
Точка движется по окружности радиусом R = 4 м. Начальная скорость v0 точки равна 3 м/с, тангенциальное ускорение аτ = 1 м/с 2 . Для момента времени t = 2 с определить: 1) длину пути s, пройденного точкой; 2) модуль перемещения |Δr|; 3) среднюю путевую скорость ; 4) модуль вектора средней скорости | |.
Точка движется по окружности радиусом R = 2 м согласно уравнению ξ = At 3 , где A = 2 м/с 3 . В какой момент времени t нормальное ускорение аn точки будет равно тангенциальному аτ. Определить полное ускорение а в этот момент.
Материальная точка двигалась по окружности радиусом 2 м. Найдите путь и перемещение через 1/6 часть оборота, 1/4, 1/2 и полный оборот.
Точка движется по окружности радиусом 60 см с постоянным тангенциальным ускорением. Найти нормальное ускорение точки через 3 с после начала движения, если известно, что к концу пятого оборота после начала движения линейная скорость точки равна 5 м/с.
Нормальное ускорение точки, движущейся по окружности радиусом 4 м, задаётся уравнением an = At 3 (A = 0,5 м/с 5 ). Определить: 1) тангенциальное ускорение точки в момент времени 5 c; 2) путь, пройденный точкой за время 5 с после начала движения; 3) полное ускорение для момента времени 1 с.
Точка движется по окружности радиусом R = 1,20 м. Уравнение движения точки имеет вид: φ = At + Bt 3 , где А = 0,500 рад/с, В = 2,50 рад/с 3 . Определить тангенциальное аτ, нормальное ап и полное а ускорение точки в момент времени t = 0,954 с.
Точка движется по окружности радиуса R = 0,5 м с постоянным касательным ускорением 2 м/с 2 из состояния покоя. Определить нормальное и полное ускорения точки в момент времени t = 1 с.
Материальная точка движется по окружности радиусом R = 4 м. Закон ее движения описывается уравнением ξ = A+Bt 2 , где A = 8 м, B = –2 м/с 2 , а ξ отсчитывается вдоль окружности. Найти момент времени, когда нормальное ускорение точки равно 9 м/с 2 , а также скорость, тангенциальное и полное ускорения точки в этот момент времени.
Материальная точка движется по окружности радиусом R = 1 м. Зависимость угла поворота от времени имеет вид φ = At 4 , где A = 1 рад/с 4 . Определить линейное ускорение материальной точки через секунду после начала движения, а также угол между линейным ускорением и радиусом окружности в этот момент времени.
Материальная точка движется по окружности радиуса R = 2 м. Закон ее движения описывается уравнением ξ(t) = At 2 + Bt 3 , где А = 3 м/с 2 , В = 1 м/с 3 , а координата ξ(t) отсчитывается вдоль окружности. Найти момент времени, когда тангенциальное ускорение точки равно 18 м/с 2 , а также нормальное и полное линейное ускорение точки в этот момент времени.
Материальная точка движется по окружности радиуса R, причем φ = ωt (φ – угол между радиус-вектором точки, проведенным из некоторой точки А окружности, и прямой, соединяющей точку А и центр окружности; ω — константа). Найти тангенциальную и нормальную составляющие скорости и ускорения точки.
Точка движется по окружности радиусом 79 см с постоянным тангенциальным ускорением. Найти нормальное ускорение точки через 3 с после начала движения, если известно, что к концу пятого оборота после начала движения линейная скорость точки равна 3 м/с.
Точка движется по окружности радиусом R = 0,1 м с постоянным тангенциальным ускорением. Найти ускорение точки через 10 с после начала движения, если известно, что к концу пятого оборота после начала движения линейная скорость точки v = 0,8 м/с.
Видео:Ускорение при равномерном движении по окружностиСкачать
Нормальное ускорение точки, движущейся по окружности радиусом r=4 м, задается уравнением an=A+Bt+Ct2 (А=1 м/с2, B=6 м/с3, С=3 м/с4) Готовое решение: Заказ №8106
Готовое решение: Заказ №8106
Тип работы: Задача
Статус: Выполнен (Зачтена преподавателем ВУЗа)
Предмет: Физика
Дата выполнения: 12.08.2020
Цена: 118 руб.
Чтобы получить решение , напишите мне в WhatsApp , оплатите, и я Вам вышлю файлы.
Кстати, если эта работа не по вашей теме или не по вашим данным , не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу , я смогу выполнить её в срок 1-3 дня!
Описание и исходные данные задания, 50% решения + фотография:
Нормальное ускорение точки, движущейся по окружности радиусом r=4 м, задается уравнением an=A+Bt+Ct2 (А=1 м/с2, B=6 м/с3, С=3 м/с4). Определить: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время t1= 5 с после начала движения; 3) полное ускорение для момента времени t2=1 с. [1) 6 м/с2; 2) 85 м; 3) 6,32 м/с2]
Дано: А=1 м/с2, В=6 м/с3, С=3 м/с4 r=4 м t1= 5 с t2=1 с
Найти: 1) aτ, 2) s, 3) a
Найдем полное ускорение точек через составляющие а — тангенциальная составляющая ускорения и аn- нормальная составляющая ускорения. Тангенциальное ускорение направленно по касательной к траектории, и нормальное ускорение , направленно к центру кривизны траектории.
Я и моя команда оказывает помощь в учёбе по любым предметам и заданиям любой сложности.
Решение задач является неотъемлемой частью обучения в любом учебном заведении, и я смогу помочь в решение задач по любым предметам.
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
🎬 Видео
Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)Скачать
Точка движется по окружности радиусом R=2см. Волькенштейн 1.47Скачать
Центростремительное ускорение. 9 класс.Скачать
Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать
Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать
Метод годографа и центростремительное ускорениеСкачать
Кинематика точки Движение по окружностиСкачать
Ускорение при криволинейном движенииСкачать
Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать
Равномерное движение точки по окружности | Физика 10 класс #7 | ИнфоурокСкачать
№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать
Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать
Тема 12. Ускорение точки при ее движении по окружностиСкачать
Центростремительное ускорение телаСкачать
Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать
ДВИЖЕНИЕ ПО ОКРУЖНОСТИ 9 класс физика ПерышкинСкачать