Найти направление магнитного поля в центре кругового тока.
 
Дано:
 
Решение:
Направление магнитного поля в центре кругового витка с током определяется по правилу правой руки: четыре пальца правой руки поставить по направлению тока в контуре, отогнутый под прямым углом большой палец укажет направление магнитного поля. Т. е. силовая линия вектора В в центре витка будет направлена вверх.
Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать

Магнитное поле кругового тока
Вы будете перенаправлены на Автор24
Французские ученые Ж. Био и Ф. Савар изучали магнитные поля, создаваемые постоянными токами разной формы. Результаты их работы обобщил известный математик и физик П. Лаплас.
Видео:Урок 271. Модуль вектора магнитной индукции. Закон АмпераСкачать

Применение закона Био – Савара – Лапласа к вычислению магнитного поля кругового тока
Закон Био-Савара–Лапласа описывает порождение магнитного поля током $I$ на элементе проводника длиной $dl$ в некоторой точке пространства ($mu$ — магнитная проницаемость вещества в котором локализовано поле):
где $d vec l ⃗$ — вектор, длина которого равна длине элемента проводника $dl$, направленный по току; $vec r$ – радиус-вектор, который проведен от элемента $dl$ в точку, в которой исследуется магнитное поле. Поскольку в правой части формулы (1) находится векторное произведение, очевидно, что индукция элементарного магнитного поля будет направлена перпендикулярно плоскости, в которой находятся векторы $vec r$ и $vec l$ и при этом является касательной к силовой линии поля.
Величину вектора $vec$ из выражения (1) найдем как:
где $ alpha $– угол между векторами $vec r$ и $vec l$ .
Конкретное направление $vec$ находят по правилу буравчика (правилу правой руки):
Если правый винт вращать так, что его поступательное движение будет совпадать с направлением течения тока в избранном элементе, то вращение его головки укажет направление $vec$.
Магнитные поля подчиняются принципу суперпозиции:
Суммарную магнитную индукцию поля, создаваемого несколькими источниками, находят как геометрическую сумму векторов магнитной индукции отдельных полей:
$vec=sumlimits_^N vec_ left( 3 right). $
Если распределение токов можно считать непрерывным, то принцип суперпозиции можно записать:
Вычисление магнитной индукции поля с применением закона Био-Савара-Лапласа довольно сложная процедура. Но при существовании определенной симметрии в распределении токов, используя, рассмотренный нами закон и принцип суперпозиции, рассчитать конкретные поля просто. В любом случае следует придерживаться следующей схемы действий:
Готовые работы на аналогичную тему
- Выделить на проводнике с током элементарный отрезок $dl$.
- Записать для исследуемой точки поля закон Био – Савара – Лапласа.
- Определить направление элементарного поля $vec$ в избранной точке.
- Воспользоваться принципом суперпозиции для магнитных полей (учесть, что суммируются векторы).
Видео:Линии магнитной индукции наглядно. Правило правой рукиСкачать

Магнитное поле кругового тока в его центре
Рисунок 1. Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ
Рассмотрим круговой проводник, по которому течет постоянный ток $I$ (рис.1). Выделим на этом проводнике элемент $dl$, который можно считать прямолинейным. Если перейти к другому элементу этого же тока, затем к третьему и так далее, применить правило правого винта, то очевидно, что все магнитные поля, созданные этими элементами в центре, направлены вдоль одной прямой, перпендикуляру к плоскости кольца. Это означает, применяя принцип суперпозиции, мы векторное сложение заменим алгебраическим.
Запишем закон Био-Савара-Лапласа для модуля вектора индукции поля, создаваемого элементом d$l_1$:
Из рис.1 мы видим:
- что расстояние от элементарного тока до центра витка равно его радиусу ($R$) и будет одинаковым для всех элементов на этом витке,
- элемент $dl$ (как и все остальные элементы) будут нормальны к радиус-вектору $vec r$.
Учитывая сказанное выражение (5) представим в виде:
Обезличивая витки с током, положим далее $dl_1=dl$.
Поскольку наш ток является непрерывным, то для нахождения полного поля в его центре, мы проинтегрируем (6), имеем:
$L=2πR$ — длина окружности витка.
Индукция магнитного поля кругового тока на его оси
Найдем индукцию магнитного поля на оси кругового тока, если ток, текущий по нему равен $I$, радиус витка — $R$ (рис.2).
Рисунок 2. Индукция магнитного поля кругового тока на его оси. Автор24 — интернет-биржа студенческих работ
Как основу для выполнения поставленной задачи возьмем закон Био-Савара-Лапласа (1), где из рис.2 мы видим, что:
$dvectimes vec=dvectimes vec+dvectimes vec(9).$
Используя принцип суперпозиции закон (1) для нашего тока и формулы (8-9) запишем:
В выражении (10) при записи интеграла, мы учли, что величина вектора $vec$ не изменяется. Кроме этого вектор $vec h$, определяющий положение точки, в которой мы ищем поле, не изменяется при движении по нашему контуру, поэтому:
$ointlimits_L <dvectimes vec> =(ointlimits_L <dvec)timesvec> =0, left( 11 right),$
так как ( $ointlimits_L <dvec)=0.>$
Вычислим интеграл: $ointlimits_L <dvectimes vec.>$ Введем единичный вектор ($vec n$), нормальный к плоскости витка с током.
$ointlimits_L <dvectimes vec=ointlimits_L <vecRdl=vecR>> ointlimits_L <dl=vecR> 2pi R=2pi R^vecleft( 12 right)$.
Подставляем результаты интегрирования из (12) в (10), имеем:
где при записи окончательного результата мы учли, что:
Видео:Поток вектора магнитной индукцииСкачать

Кольца Гельмгольца
Кольцами Гельмгольца считают пару проводников в виде колец одного радиуса, расположенных в параллельных плоскостях (рис.3) на одной оси. Расстояние между плоскостями колец равно их радиусу.
Рисунок 3. Кольца Гельмгольца. Автор24 — интернет-биржа студенческих работ
Рассмотрим магнитное поле на оси этих колец.
Декартову систему координат разместим так, что ее начало совпадает с центром нижнего кольца с током. Ось Z нашей системы будет направлена по оси колец (рис.3).
Запишем индукцию магнитного поля в точке с координатой $z$ на оси колец. Используем формулу (13):
Исследуем полученное поле. Считается, что магнитное поле на оси колец Гельмгольца на посередине между ними является однородным.
Неоднородность в первом приближении характеризуют первой производной:
Если $z=fracquad$ , подставим в (15), имеем:
По условию для колец Гельмгольца, имеем: $d=R.$
На середине их общей оси ($z=frac)$, получаем:
Равенство нулю второй производной от $B_z$ по координате $z$, показывает, что в на середине оси колец магнитное поле является однородным с высокой степенью точности.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 28 03 2022
Видео:Магнитное поле. Магнитная индукция | Физика 11 класс #1 | ИнфоурокСкачать

Индукция магнитного поля в центре и на оси кругового витка с током
Вначале решим более общую задачу нахождения магнитной индукции на оси витка с током. Для этого сделаем рисунок 3.8, на котором изобразим элемент тока 


Рис. 3.8 Определение магнитной индукции
на оси кругового витка с током
Вектор магнитной индукции 

Как следует из правил векторного произведения, магнитная индукция 



 
Для нахождения полной магнитной индукции 

 
Данный интеграл можно упростить, если представить 

При этом в силу симметрии 



 
Учитывая, что 

 
Нетрудно заметить, что вычисление получившегося интеграла даст длину контура, т. е. 

 
Используя магнитный момент контура, формулу (3.19) можно переписать следующим образом
 
Теперь отметим, что полученное в общем виде решение (3.19) позволяет проанализировать предельный случай, когда точка 

 
Результирующий вектор магнитной индукции (3.19) направлен вдоль оси тока, а его направление связано с направлением тока правилом правого винта (рис. 3.9).
Рис. 3.9 Определение магнитной индукции
в центре кругового витка с током
Индукция магнитного поля в центре дуги окружности
Данная задача может быть решена как частный случай рассмотренной в предыдущем пункте задачи. В этом случае интеграл в формуле (3.18) следует брать не по всей длине окружности, а только по ее дуге l. А также учесть то, что индукция ищется в центре дуги, поэтому 
 
где 

5 Вектор индукции магнитного поля движущегося в вакууме точечного заряда (без вывода формулы)
 
где 


Силы Ампера и Лоренца
Опыты по отклонению рамки с током в магнитном поле показывают, что на всякий проводник с током, помещенный в магнитное поле, действует механическая сила, называемая силой Ампера.
Закон Ампера определяет силу, действующую на проводник с током, помещенный в магнитное поле:
 

где 




Если прямолинейный проводник длиной 
 
Сила Ампера всегда направлена перпендикулярно плоскости, содержащей векторы 




Рис. 3.10 Правило левой руки и правило буравчика для силы Ампера
С другой стороны, для определения направления силы Ампера можно также применить мнемоническоеправило левой руки (рис. 3.10): нужно поместить ладонь так, чтобы силовые линии магнитной индукции 
Исходя из формулы (3.22), найдем выражение для силы взаимодействия двух бесконечно длинных, прямых, параллельных друг другу проводников, по которым текут токи I1 и I2 (рис. 3.11) (опыт Ампера). Расстояние между проводами равно a.
Определим силу Ампера dF21, действующую со стороны магнитного поля первого тока I1 на элемент l2dl второго тока.
Величина магнитной индукции этого поля B1 в точке расположения элемента второго проводника с током равна
 
Рис. 3.11 Опыт Ампера по определению силы взаимодействия
двух прямолинейных токов
Тогда с учетом (3.22) получим
 
Рассуждая точно так же, можно показать, что сила Ампера, действующая со стороны магнитного поля, создаваемого вторым проводником с током, на элемент первого проводника I1dl , равна
 
т. e. dF12 = dF21. Таким образом, мы вывели формулу (3.1), которая была получена Ампером экспериментальным путем.
На рис. 3.11 показано направление сил Ампера. В случае, когда токи направлены в одну и ту же сторону, то это ‑ силы притяжения, а в случае токов разного направления ‑ силы отталкивания.
Из формулы (3.24), можно получить силу Ампера, действующую на единицу длины проводника
 
Таким образом, сила взаимодействия двух параллельных прямых проводников с токами прямо пропорциональна произведению величин токов и обратно пропорциональна расстоянию между ними.
Закон Ампера утверждает, что на элемент с током, помещенный в магнитное поле, действует сила. Но всякий ток есть перемещение заряженных частиц. Естественно предположить, что силы, действующие на проводник с током в магнитном поле, обусловлены силами, действующими на отдельные движущиеся заряды. Этот вывод подтверждается рядом опытов (например, электронный пучок в магнитном поле отклоняется).
Найдем выражение для силы, действующей на заряд, движущийся в магнитном поле, исходя из закона Ампера. Для этого в формулу, определяющую элементарную силу Ампера
 
подставим выражение для силы электрического тока
 

где I – сила тока, протекающего через проводник; Q – величина полного заряда протекшего за время t; q – величина заряда одной частицы; N – общее число заряженных частиц, прошедших через проводник объемом V, длиной l и сечением S; n – число частиц в единице объема (концентрация); v – скорость частицы.
В результате получим:
 
Направление вектора 
 
Эта сила действует на все движущиеся заряды в проводнике длиной 
 
Следовательно, сила, действующая на один заряд, будет равна:
 
Формула (3.28) определяет силу Лоренца, величина которой
 
где a — угол между векторами скорости частицы и магнитной индукции.
В экспериментальной физике часто встречается ситуация, когда заряженная частица движется одновременно и в магнитном и электрическом поле. В этом случае рассматривают полную силу Лоренца в виде
 
где 



Только в магнитном поле на движущуюся заряженную частицу действует магнитная составляющая силы Лоренца (рис. 3.12)
 
Рис. 3.12 Сила Лоренца
Магнитная составляющая силы Лоренца перпендикулярна вектору скорости и вектору магнитной индукции. Она не изменяет величины скорости, а изменяет только ее направление, следовательно, работы не совершает.
Взаимная ориентация трех векторов ‑ 


Рис. 3.13 Сила Лоренца, действующая на положительный заряд
Как видно из рис. 3.13, если частица влетает в магнитное поле под углом 

 

где 
Отношение магнитного момента 
 
где 
Рассмотрим общий случай движения заряженной частицы в однородном магнитном поле, когда ее скорость направлена под произвольным углом a к вектору магнитной индукции (рис. 3.14). Если заряженная частица влетает в однородное магнитное поле под углом 
Разложим вектор скорости на составляющие v|| (параллельную вектору 

 

Наличие v^ приводит к тому, что на частицу будет действовать сила Лоренца и она будет двигаться по окружности радиусом R в плоскости перпендикулярной вектору 
 
Период такого движения (время одного витка частицы по окружности) равен
 
Рис. 3.14 Движение по винтовой линии заряженной частицы
в магнитном поле
За счет наличия v|| частица будет двигаться равномерно вдоль 
Таким образом, частица участвует одновременно в двух движениях. Результирующая траектория движения представляет собой винтовую линию, ось которой совпадает с направлением индукции магнитного поля. Расстояние h между соседними витками называется шагом винтовой линии и равно:
 
Действие магнитного поля на движущийся заряд находит большое практическое применение, в частности, в работе электронно-лучевой трубки, где используется явление отклонения заряженных частиц электрическим и магнитным полями, а также в работе масс-спектрографов, позволяющих определить удельный заряд частиц (q/m) и ускорителей заряженных частиц (циклотронов).
Рассмотрим один такой пример, назыаемый «магнитной бутылкой» (рис. 3.15). Пусть неоднородное магнитное поле создано двумя витками с токами, протекающими в одном направлении. Сгущение линий индукции в какой-либо пространнственной области означает большее значение величины магнитной индукции в этой области. Индукция магнитного поля вблизи витков с током больше, чем в пространстве между ними. По этой причине радиус винтовой линии траектории частицы, обратно пропорциональный модулю индукции, меньше вблизи витков, чем в пространстве между ними. После того, как частица, двигаясь вправо по винтовой линии, пройдет среднюю точку, сила Лоренца, действующая на чатицу, приобретает компоненту 

Рис. 3.15 Магнитная «бутылка»
Закономерностями движения заряженных частиц в магнитном поле можно объяснить особенности движения космических лучей вблизи Земли. Космические лучи – это потоки заряженных частиц большой энергии. При приближении к поверхности Земли эти частицы начинают испытывать действие магнитного поля Земли. Те из них, которые направляются к магнитным полюсам, будут двигаться почти вдоль линий земного магнитного поля и навиваться на них. Заряженные частицы, подлетающие к Земле вблизи экватора, направлены почти перпендикулярно к линиям магнитного поля, их траектория будет искривляться. и лишь самые быстрые из них достигнут поверхности Земли (рис. 3.16).
  
Рис. 3.16 Образование Полярного сияния
Поэтому интенсивность космических лучей доходящих до Земли вблизи экватора, заметно меньше, чем вблизи полюсов. С этим связан тот факт что, Полярное сияние наблюдается главным образом в приполярных областях Земли.
Эффект Холла
В 1880г. американский физик Холл провел следующий опыт: он пропускал постоянный электрический ток I через пластинку из золота и измерял разность потенциалов 

Рис. 3.17 Эффект Холла
В отсутствии магнитного поля 

Экспериментально было обнаружено, что
 
где I ‑ сила тока; B ‑ индукция магнитного поля; b ‑ ширина пластины; 
Дальнейшее исследование показало, что эффект Холла наблюдается во всех проводниках и полупроводниках. Величина константы Холла зависит от материала пластины, причем этот коэффициент для одних веществ положителен, а для других ‑ отрицателен.
Явление Холла можно объяснить, исходя из силы Лоренца. На заряд, движущийся в магнитном поле с индукцией B, действует сила Лоренца
 
Рис. 3.18 Знак эффекта Холла
Если носителями тока в веществе являются положительные заряды то под действием силы Лоренца эти заряды q отклоняются к верхней грани (при выбранных направлениях 

Найдем теперь выражение для 


 
  
Если пластина достаточно длинная и широкая, то поперечное электрическое поле можно считать однородным. Для однородного поля можно написать связь между E и 
 
Силу тока I можно выразить следующим образом:
 
где v ‑ скорость упорядоченного движения зарядов; n ‑ число зарядов в единице объема; 
 
подставляя (3.35) в (3.33) получим
 
Сравнивая эту формулу с экспериментальной (3.31), имеем
  
Отсюда видно, что, знак константы Холла совпадает со знаком заряда q носителей тока. В полупроводниках носителями тока могут быть электроны ( 



С помощью константы Холла можно также определить концентрацию носителей тока, если характер проводимости и заряд носителей тока известны (например, для металлов):
 
На принципе, похожем на эффект Холла, основана работа МГД- генераторов (магнитогидродинамических генераторов). В эффекте Холла используется ток проводимости, а можно использовать конвекционный ток. Например, по трубе продувается поток раскаленных газов (следовательно, ионизированных) в магнитном поле. В трубу вводятся электроды, на них возникает разность потенциалов. Величина 
К.П.Д. МГД-генераторов может достигать 50…60%, в то время, как у тепловых электростанций 
🌟 Видео
ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой рукиСкачать

Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

Индукция магнитного поля | Физика 9 класс #37 | ИнфоурокСкачать

Инфимум, супремум, нижний и верхний пределы последовательности ★ Демидович 101.1Скачать

Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"Скачать

ЛР-10-2-03 Определение коэффициента поверхностного натяжения методом отрыва капельСкачать

Найти центр и радиус окружностиСкачать

Электромагнитная индукция за 1 минутуСкачать

Правило правого буравчика. Правило левой руки | ФИЗИКА ЕГЭСкачать

Вектор магнитной индукции, принцип суперпозиции магнитных полейСкачать

14. Вектор магнитной индукции. Правило правого винта.Скачать

Математика это не ИсламСкачать

МАГНИТНОЕ ПОЛЕ за 24 минуты. ЕГЭ Физика. Николай Ньютон. ТехноскулСкачать

Магнитное поле. Вектор магнитной индукцииСкачать

Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном полеСкачать















