Найти сторону треугольника через диаметр описанной окружности

Как найти сторону треугольника описанного окружностью
Содержание
  1. Треугольник. Формулы и свойства треугольников.
  2. Типы треугольников
  3. По величине углов
  4. По числу равных сторон
  5. Вершины углы и стороны треугольника
  6. Свойства углов и сторон треугольника
  7. Теорема синусов
  8. Теорема косинусов
  9. Теорема о проекциях
  10. Формулы для вычисления длин сторон треугольника
  11. Медианы треугольника
  12. Свойства медиан треугольника:
  13. Формулы медиан треугольника
  14. Биссектрисы треугольника
  15. Свойства биссектрис треугольника:
  16. Формулы биссектрис треугольника
  17. Высоты треугольника
  18. Свойства высот треугольника
  19. Формулы высот треугольника
  20. Окружность вписанная в треугольник
  21. Свойства окружности вписанной в треугольник
  22. Формулы радиуса окружности вписанной в треугольник
  23. Окружность описанная вокруг треугольника
  24. Свойства окружности описанной вокруг треугольника
  25. Формулы радиуса окружности описанной вокруг треугольника
  26. Связь между вписанной и описанной окружностями треугольника
  27. Средняя линия треугольника
  28. Свойства средней линии треугольника
  29. Периметр треугольника
  30. Формулы площади треугольника
  31. Формула Герона
  32. Равенство треугольников
  33. Признаки равенства треугольников
  34. Первый признак равенства треугольников — по двум сторонам и углу между ними
  35. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  36. Третий признак равенства треугольников — по трем сторонам
  37. Подобие треугольников
  38. Признаки подобия треугольников
  39. Первый признак подобия треугольников
  40. Второй признак подобия треугольников
  41. Третий признак подобия треугольников
  42. Треугольник. Соотношения между сторонами треугольника и радиусами вписанного и описанного кругов.
  43. Все формулы для треугольника
  44. 1. Как найти неизвестную сторону треугольника
  45. 2. Как узнать сторону прямоугольного треугольника
  46. 3. Формулы сторон равнобедренного треугольника
  47. 4. Найти длину высоты треугольника
  48. Длина стороны правильного многоугольника
  49. Треугольник. Соотношения между сторонами треугольника и радиусами вписанного и описанного кругов.

Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Треугольник. Формулы и свойства треугольников.

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Типы треугольников

По величине углов

Найти сторону треугольника через диаметр описанной окружности

Найти сторону треугольника через диаметр описанной окружности

Найти сторону треугольника через диаметр описанной окружности

По числу равных сторон

Найти сторону треугольника через диаметр описанной окружности

Найти сторону треугольника через диаметр описанной окружности

Найти сторону треугольника через диаметр описанной окружности

Видео:Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать

Задача 6 №27910 ЕГЭ по математике. Урок 130

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Найти сторону треугольника через диаметр описанной окружности

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Нахождение диаметра описанной окружностиСкачать

Нахождение диаметра описанной окружности

Медианы треугольника

Найти сторону треугольника через диаметр описанной окружности

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Биссектрисы треугольника

Найти сторону треугольника через диаметр описанной окружности

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Высоты треугольника

Найти сторону треугольника через диаметр описанной окружности

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Окружность вписанная в треугольник

Найти сторону треугольника через диаметр описанной окружности

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Окружность описанная вокруг треугольника

Найти сторону треугольника через диаметр описанной окружности

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Задача 6 №27934 ЕГЭ по математике. Урок 148

Связь между вписанной и описанной окружностями треугольника

Видео:Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать

Задание 16 ОГЭ по математике. Две окружности одна  описана около квадрата, другая вписана в него.

Средняя линия треугольника

Свойства средней линии треугольника

Найти сторону треугольника через диаметр описанной окружности

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Периметр треугольника

Найти сторону треугольника через диаметр описанной окружности

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:Геометрия Радиус окружности, описанной около треугольника MKP равен 5 см SinM = 0,7 Найдите сторонуСкачать

Геометрия Радиус окружности, описанной около треугольника MKP равен 5 см SinM = 0,7 Найдите сторону

Формулы площади треугольника

Найти сторону треугольника через диаметр описанной окружности

Формула Герона

S =a · b · с
4R

Видео:Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

Задача 6 №27916 ЕГЭ по математике. Урок 133

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Подобие треугольников

Найти сторону треугольника через диаметр описанной окружности

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Как найти диаметр окружности, описанной около равнобедренного треугольникаСкачать

Как найти диаметр окружности, описанной около равнобедренного треугольника

Треугольник. Соотношения между сторонами треугольника и радиусами вписанного и описанного кругов.

По двум сторонам a и b треугольника ABC и радиусу R описанного круга вычислить третью сторону x треугольника.

Найти сторону треугольника через диаметр описанной окружности

Найти сторону треугольника через диаметр описанной окружности

Применяя к этому четырехугольнику теорему Птоломея будем иметь:

Найти сторону треугольника через диаметр описанной окружности

откуда легко найдем x .

Задача будет иметь другое решение, если предположим, что стороны a и b лежат по одну сторону от центра. Применяя к этому случаю теорему Птоломея, мы получим следующее уравнение:

Найти сторону треугольника через диаметр описанной окружности

Теорема.

Произведение двух сторон треугольника равно:

1. произведению диаметра описанного круга на высоту, проведенную к третьей стороне.

2. квадрату биссектрисы угла, заключенного между этими сторонами, сложенному с произведением отрезков третьей стороны.

1.Обозначим стороны треугольника ABC через a, b и с, высоту, опущенную на сторону a через ha , а радиус описанного круга через R.Проведем диаметр AD и соединим D с B.

Треугольники ABD и AEC подобны, потому что углы B и E прямые и D= С , как углы вписанные, опирающиеся на одну и ту же дугу.

Из этой формулы легко определить величину радиуса R описанного круга.

Найти сторону треугольника через диаметр описанной окружности

По первой теореме мы имеем: bс = 2Rha , где b и с есть две стороны треугольника, haвысота, опущенная на третью сторону треугольника, и Rрадиус описанного круга.

Из этого равенства выводим:

Исключим из этой формулы высоту ha: для этого умножим числитель и знаменатель дроби на a. Тогда, заменив произведение ha a удвоенной площадью треугольника (которую обозначим S), получим:

Найти сторону треугольника через диаметр описанной окружности,

Чтобы найти радиус r внутреннего вписанного круга рассмотрим треугольник АВС со вписанной в него окружностью. Отметим центр вписанной окружности и примем во внимание, что прямые OA, OB и разделяют данный треугольник на три других треугольника, у которых основаниями служат стороны данного треугольника, а высотой — радиус r.

Найти сторону треугольника через диаметр описанной окружности

Поэтому: S=1/2ar + 1/2br + 1/2cr = r ½ (a+b+c) = rp.

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Все формулы для треугольника

Видео:Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать

Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математика

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Найти сторону треугольника через диаметр описанной окружности

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Найти сторону треугольника через диаметр описанной окружности

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Найти сторону треугольника через диаметр описанной окружности

Видео:ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Найти сторону треугольника через диаметр описанной окружности

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Найти сторону треугольника через диаметр описанной окружности

Формулы для катета, ( b ):

Найти сторону треугольника через диаметр описанной окружности

Формулы для гипотенузы, ( c ):

Найти сторону треугольника через диаметр описанной окружности

Найти сторону треугольника через диаметр описанной окружности

Формулы сторон по теореме Пифагора, ( a , b ):

Найти сторону треугольника через диаметр описанной окружности

Найти сторону треугольника через диаметр описанной окружности

Найти сторону треугольника через диаметр описанной окружности

Видео:Треугольник и окружность #shortsСкачать

Треугольник и окружность #shorts

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Найти сторону треугольника через диаметр описанной окружности

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Найти сторону треугольника через диаметр описанной окружности

Найти сторону треугольника через диаметр описанной окружности

Формулы длины равных сторон , (a):

Найти сторону треугольника через диаметр описанной окружности

Найти сторону треугольника через диаметр описанной окружности

Видео:Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать

Задача 6 №27900 ЕГЭ по математике. Урок 128

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

Найти сторону треугольника через диаметр описанной окружностиH — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Найти сторону треугольника через диаметр описанной окружности

Формула длины высоты через сторону и угол, ( H ):

Найти сторону треугольника через диаметр описанной окружности

Формула длины высоты через сторону и площадь, ( H ):

Найти сторону треугольника через диаметр описанной окружности

Формула длины высоты через стороны и радиус, ( H ):

Длина стороны правильного многоугольника

Определение длины стороны правильного многоугольника по радиусу вписанной окружности

От нашего нового пользователя поступил вот такой запрос:
«Калькулятор должен вычислять длину стороны правильного многоугольника (шестиугольник, пятигольник) по указанному диаметру (или радиусу) описанной окружности».

Удовлетворяем запрос оперативно. Заметим, что для решения задачи нужно найти длину третьей стороны треугольника, исходящего из центра описанной окружности и опирающегося на две соседние вершины правильного многоугольника. Про этот треугольник известно многое: длины двух сторон — это радиусы описанной окружности, и угол, как нетрудно заметить, — это 360, деленное на число вершин правильного многоугольника. Далее используется соотношение из теоремы синусов — две стороны относятся друг к другу также как и синусы противолежащих им углов. Поскольку треугольник равнобедренный и сумма углов в треугольнике равна 180 градусам, угол, противолежащий радиусу вычисляется тривиально. Результат — ниже.

Треугольник. Соотношения между сторонами треугольника и радиусами вписанного и описанного кругов.

По двум сторонам a и b треугольника ABC и радиусу R описанного круга вычислить третью сторону x треугольника.

Найти сторону треугольника через диаметр описанной окружности

Найти сторону треугольника через диаметр описанной окружности

Применяя к этому четырехугольнику теорему Птоломея будем иметь:

Найти сторону треугольника через диаметр описанной окружности

откуда легко найдем x .

Задача будет иметь другое решение, если предположим, что стороны a и b лежат по одну сторону от центра. Применяя к этому случаю теорему Птоломея, мы получим следующее уравнение:

Найти сторону треугольника через диаметр описанной окружности

Теорема.

Произведение двух сторон треугольника равно:

1. произведению диаметра описанного круга на высоту, проведенную к третьей стороне.

2. квадрату биссектрисы угла, заключенного между этими сторонами, сложенному с произведением отрезков третьей стороны.

1.Обозначим стороны треугольника ABC через a, b и с, высоту, опущенную на сторону a через ha , а радиус описанного круга через R.Проведем диаметр AD и соединим D с B.

Треугольники ABD и AEC подобны, потому что углы B и E прямые и D= С , как углы вписанные, опирающиеся на одну и ту же дугу.

Из этой формулы легко определить величину радиуса R описанного круга.

Найти сторону треугольника через диаметр описанной окружности

По первой теореме мы имеем: bс = 2Rha , где b и с есть две стороны треугольника, haвысота, опущенная на третью сторону треугольника, и Rрадиус описанного круга.

Из этого равенства выводим:

Исключим из этой формулы высоту ha: для этого умножим числитель и знаменатель дроби на a. Тогда, заменив произведение ha a удвоенной площадью треугольника (которую обозначим S), получим:

Найти сторону треугольника через диаметр описанной окружности,

Чтобы найти радиус r внутреннего вписанного круга рассмотрим треугольник АВС со вписанной в него окружностью. Отметим центр вписанной окружности и примем во внимание, что прямые OA, OB и разделяют данный треугольник на три других треугольника, у которых основаниями служат стороны данного треугольника, а высотой — радиус r.

Найти сторону треугольника через диаметр описанной окружности

Поэтому: S=1/2ar + 1/2br + 1/2cr = r ½ (a+b+c) = rp.

Поделиться или сохранить к себе: