Найти прямую параллельную данной и проходящей через точку в пространстве

Видео:12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

Уравнение прямой, проходящей через заданную точку параллельно заданной прямой.

Эта статья является развернутым ответом на вопрос: «Как составить уравнение прямой, проходящей через заданную точку плоскости параллельно заданной прямой»? Сначала приведена необходимая теория, после чего разобраны решения характерных задач. В заключении разобрано нахождение уравнений прямой, проходящей через заданную точку трехмерного пространства параллельно заданной прямой.

Навигация по странице.

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Уравнение прямой, проходящей через заданную точку плоскости параллельно заданной прямой.

Чтобы составление уравнения прямой, проходящей через заданную точку плоскости параллельно заданной прямой, не вызвало затруднений, вспомним важные факты.

Аксиома параллельных прямых гласит: на плоскости через точку, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Таким образом, мы можем определить конкретную прямую a на плоскости, указав прямую линию b , которой параллельна прямая a , и точку М1 , не лежащую на прямой b , через которую проходит прямая a .

Поставим перед собой следующую задачу.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy . Пусть в этой системе координат задана точка Найти прямую параллельную данной и проходящей через точку в пространствеи прямая b , которой соответствует некоторое уравнение прямой на плоскости. Требуется написать уравнение прямой a , которая проходит через точку М1 и параллельна прямой b .

Решим поставленную задачу.

Из условия мы знаем координаты точки М1 , через которую проходит прямая a . Этих данных не достаточно, чтобы написать уравнение прямой a .

Нам еще нужно знать

Как же их найти?

По условию прямая a параллельна прямой b , тогда, на основании необходимого и достаточного условия параллельности двух прямых на плоскости, в качестве направляющего вектора прямой a мы можем принять направляющий вектор прямой b , в качестве нормального вектора прямой a мы можем взять нормальный вектор прямой b , а угловой коэффициент прямой a равен угловому коэффициенту прямой b (или они оба бесконечны).

Таким образом, чтобы в прямоугольной системе координат на плоскости написать уравнение прямой a , проходящей через заданную точку Найти прямую параллельную данной и проходящей через точку в пространствепараллельно заданной прямой b , нужно определить

  • или координаты направляющего вектора прямой b (Найти прямую параллельную данной и проходящей через точку в пространстве),
  • или координаты нормального вектора прямой b (Найти прямую параллельную данной и проходящей через точку в пространстве),
  • или угловой коэффициент прямой b (Найти прямую параллельную данной и проходящей через точку в пространстве),

принять их соответственно в качестве

  • координат направляющего вектора прямой a (Найти прямую параллельную данной и проходящей через точку в пространстве),
  • координат нормального вектора прямой a (Найти прямую параллельную данной и проходящей через точку в пространстве),
  • углового коэффициента прямой a (Найти прямую параллельную данной и проходящей через точку в пространстве),

и записать требуемое уравнение прямой a соответственно в виде

  • Найти прямую параллельную данной и проходящей через точку в пространствеили Найти прямую параллельную данной и проходящей через точку в пространстве,
  • Найти прямую параллельную данной и проходящей через точку в пространстве,
  • Найти прямую параллельную данной и проходящей через точку в пространстве.

Внесем ясности – приведем примеры с подробными решениями на каждый случай.

Напишите уравнение прямой, которая в прямоугольной системе координат Oxy на плоскости проходит через точку Найти прямую параллельную данной и проходящей через точку в пространствепараллельно прямой Найти прямую параллельную данной и проходящей через точку в пространстве.

Из параметрических уравнений прямой Найти прямую параллельную данной и проходящей через точку в пространственам сразу видны координаты ее направляющего вектора Найти прямую параллельную данной и проходящей через точку в пространстве. Этот вектор является направляющим вектором прямой, уравнение которой нам требуется составить. Уравнение прямой, проходящей через точку Найти прямую параллельную данной и проходящей через точку в пространствеи имеющей направляющий вектор с координатами Найти прямую параллельную данной и проходящей через точку в пространстве, имеет вид Найти прямую параллельную данной и проходящей через точку в пространстве.

Это и есть искомые уравнения прямой, проходящей через заданную точку Найти прямую параллельную данной и проходящей через точку в пространствепараллельно заданной прямой Найти прямую параллельную данной и проходящей через точку в пространстве.

Найти прямую параллельную данной и проходящей через точку в пространстве.

Иногда требуется составить уравнение прямой определенного вида, проходящей через заданную точку плоскости параллельно заданной прямой. В этом случае сначала записываем уравнение прямой, которое проще всего получить, после чего приводим его к нужному виду.

Составьте уравнение прямой в отрезках, если эта прямая в прямоугольной системе координат Oxy проходит через точку плоскости с координатами Найти прямую параллельную данной и проходящей через точку в пространствепараллельно прямой Найти прямую параллельную данной и проходящей через точку в пространстве.

Очевидно, нормальным вектором прямой, общее уравнение которой имеет вид Найти прямую параллельную данной и проходящей через точку в пространстве, является вектор Найти прямую параллельную данной и проходящей через точку в пространстве. Этот вектор также является нормальным вектором прямой, уравнение которой мы ищем. Общее уравнение прямой, проходящей через точку с координатами Найти прямую параллельную данной и проходящей через точку в пространствеи имеющей нормальный вектор Найти прямую параллельную данной и проходящей через точку в пространствеимеет вид Найти прямую параллельную данной и проходящей через точку в пространстве. Это общее уравнение прямой, проходящей через точку с координатами Найти прямую параллельную данной и проходящей через точку в пространствепараллельно прямой Найти прямую параллельную данной и проходящей через точку в пространстве. Осталось перейти от полученного уравнения прямой Найти прямую параллельную данной и проходящей через точку в пространствек требуемому уравнению прямой в отрезках: Найти прямую параллельную данной и проходящей через точку в пространстве.

Найти прямую параллельную данной и проходящей через точку в пространстве.

Напишите уравнение прямой, которая в прямоугольной системе координат Oxy на плоскости проходит через точку Найти прямую параллельную данной и проходящей через точку в пространствеи параллельна прямой Найти прямую параллельную данной и проходящей через точку в пространстве.

Мы знаем, что угловые коэффициенты параллельных прямых равны (или бесконечны), тогда Найти прямую параллельную данной и проходящей через точку в пространстве— угловой коэффициент прямой, уравнение которой нам требуется составить. По условию эта прямая проходит через точку Найти прямую параллельную данной и проходящей через точку в пространстве, следовательно, ее уравнение имеет вид Найти прямую параллельную данной и проходящей через точку в пространстве.

Найти прямую параллельную данной и проходящей через точку в пространстве.

Итак, уравнение прямой a , проходящей через заданную точку плоскости M1 параллельно заданной прямой b , проще всего записывать в таком виде, в котором записано уравнение заданной прямой b .

Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Уравнения прямой, проходящей через заданную точку пространства параллельно заданной прямой.

В трехмерном пространстве через точку М1 , не лежащую на прямой b , проходит единственная прямая a , параллельная прямой b . Таким образом, прямую в пространстве можно задать, указав точку, через которую она проходит, и прямую, которой она параллельна.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана прямая b некоторыми уравнениями прямой в пространстве и точка Найти прямую параллельную данной и проходящей через точку в пространстве. Требуется написать уравнения прямой a , проходящей через точку M1 параллельно прямой b .

Направляющим вектором прямой a является направляющий вектор прямой b . Таким образом, по известным уравнениям прямой b мы можем определить координаты ее направляющего вектора, а, следовательно, и координаты направляющего вектора прямой a . После этого мы можем записать канонические уравнения прямой a в пространстве и параметрические уравнения прямой a в пространстве, так как известны координаты точки, лежащей на прямой a , и координаты направляющего вектора прямой a .

Рассмотрим решения примеров.

Напишите уравнения прямой, которая проходит через начало прямоугольной системы координат Oxyz в трехмерном пространстве параллельно прямой Найти прямую параллельную данной и проходящей через точку в пространстве.

Очевидно, направляющим вектором прямой Найти прямую параллельную данной и проходящей через точку в пространствеявляется вектор с координатами Найти прямую параллельную данной и проходящей через точку в пространстве. Этот же вектор является направляющим вектором прямой, уравнение которой мы составляем. По условию эта прямая проходит через точку Найти прямую параллельную данной и проходящей через точку в пространстве, следовательно, ее канонические уравнения имеют вид Найти прямую параллельную данной и проходящей через точку в пространстве.

Найти прямую параллельную данной и проходящей через точку в пространстве.

От канонических уравнений прямой a при необходимости можно будет перейти к уравнениям двух плоскостей, пересекающихся по прямой a .

В трехмерном пространстве в прямоугольной системе координат Oxyz заданы три точки Найти прямую параллельную данной и проходящей через точку в пространстве. Напишите уравнения двух плоскостей, которые пересекаются по прямой, проходящей через точку С параллельно прямой АВ .

Направляющим вектором прямой, проходящей через точку С параллельно прямой АВ , является вектор Найти прямую параллельную данной и проходящей через точку в пространстве. По координатам точек В и А мы можем вычислить координаты вектора Найти прямую параллельную данной и проходящей через точку в пространстве(при необходимости смотрите статью вычисление координат вектора по координатам точек конца и начала вектора): Найти прямую параллельную данной и проходящей через точку в пространстве. Канонические уравнения прямой, проходящей через точку Найти прямую параллельную данной и проходящей через точку в пространствеи имеющей направляющий вектор Найти прямую параллельную данной и проходящей через точку в пространстве, запишутся как Найти прямую параллельную данной и проходящей через точку в пространстве.

Осталось получить уравнения двух пересекающихся плоскостей, задающих эту прямую:
Найти прямую параллельную данной и проходящей через точку в пространстве

Найти прямую параллельную данной и проходящей через точку в пространстве.

Видео:Уравнение параллельной прямойСкачать

Уравнение параллельной прямой

Уравнение параллельной прямой

Альтернативная формула:
Прямая, проходящая через точку M1(x1; y1) и параллельная прямой Ax+By+C=0 , представляется уравнением

назначение сервиса . Онлайн-калькулятор предназначен для составления уравнения параллельной прямой (см. также как составить уравнение перпендикулярной прямой).

Пример №2 . Написать уравнение прямой, параллельной прямой 2x + 5y = 0 и образующей вместе с осями координат треугольник, площадь которого равна 5.
Решение. Так как прямые параллельны, то уравнение искомой прямой 2x + 5y + C = 0. Площадь прямоугольного треугольника Найти прямую параллельную данной и проходящей через точку в пространстве, где a и b его катеты. Найдем точки пересечения искомой прямой с осями координат:
Найти прямую параллельную данной и проходящей через точку в пространстве Найти прямую параллельную данной и проходящей через точку в пространстве Найти прямую параллельную данной и проходящей через точку в пространствеНайти прямую параллельную данной и проходящей через точку в пространстве;
Найти прямую параллельную данной и проходящей через точку в пространствеНайти прямую параллельную данной и проходящей через точку в пространстве.
Итак, A(-C/2,0), B(0,-C/5). Подставим в формулу для площади: Найти прямую параллельную данной и проходящей через точку в пространстве. Получаем два решения: 2x + 5y + 10 = 0 и 2x + 5y – 10 = 0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-2; 5) и параллельной прямой 5x-7y-4=0 .
Решение. Данную прямую можно представить уравнением y = 5 /7x – 4 /7 (здесь a = 5 /7). Уравнение искомой прямой есть y – 5 = 5 / 7(x – (-2)), т.е. 7(y-5)=5(x+2) или 5x-7y+45=0 .

Пример №4 . Решив пример 3 (A=5, B=-7) по формуле (2), найдем 5(x+2)-7(y-5)=0.

Пример №5 . Составить уравнение прямой, проходящей через точку (-2;5) и параллельной прямой 7x+10=0.
Решение. Здесь A=7, B=0. Формула (2) дает 7(x+2)=0, т.е. x+2=0. Формула (1) неприменима, так как данное уравнение нельзя разрешить относительно y (данная прямая параллельна оси ординат).

Видео:Уравнение прямой в пространстве через 2 точки. 11 класс.Скачать

Уравнение прямой в пространстве через 2 точки. 11 класс.

Уравнение параллельной прямой

Как составить уравнение прямой параллельной данной прямой и проходящей через данную точку?

Пусть y = k1x+b1 — данная прямая. С учётом условия параллельности прямых уравнение прямой, параллельной данной, имеет вид y = k1x+b2.

Так как эта прямая проходит через точку M(xo; yo), то её координаты удовлетворяют уравнению прямой. Подставив в уравнение xo и yo, мы найдем b:

1) Составить уравнение прямой, которая проходит через точку A(4;21) и параллельна прямой y=3x-8.

Так как угловые коэффициенты у параллельных прямых равны, то k2=k1=3 и уравнение прямой, параллельной прямой y=3x-8, имеет вид y=3x+b. Так как искомая прямая проходит через точку A(4;21), подставляем в уравнение прямой координаты A (x=4; y=21):

21=3·4+b, откуда находим b: b= 21-12= 9.

Итак, уравнение прямой, параллельной прямой y=3x-8, проходящей через точку A(4;21) — y=3x+9.

2) Написать уравнение прямой, параллельной прямой x=5, проходящей через точку B(-3; 5).

Так как прямая x=5 параллельна оси Oy, то и параллельная ей прямая также параллельна Oy, а значит, уравнение этой прямой имеет вид x=a.

Так как эта прямая проходит через точку B(-3; 5), то её абсцисса удовлетворяет уравнению прямой: a= -3.

Итак, уравнение прямой, параллельной прямой x=5 и проходящей через точку B(-3; 5) — x= -3.

3) Написать уравнение прямой, параллельной прямой y= -11, проходящей через точку K(2; 4).

Так как прямая y= -11 параллельна оси Ox, то и параллельная ей прямая также параллельна оси Ox. Поэтому уравнение прямой имеет вид y=b.

Поскольку эта прямая проходит через точку K(2; 4), то её ордината удовлетворяет уравнению прямой: b=4.

Уравнение прямой, параллельной прямой y= -11 и проходящей через точку K(2; 4) — y=4.

📺 Видео

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

10 класс, 4 урок, Параллельные прямые в пространствеСкачать

10 класс, 4 урок, Параллельные прямые в пространстве

Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Написать канонические и параметрические уравнения прямой в пространствеСкачать

Написать канонические и параметрические уравнения прямой в пространстве

11. Прямая в пространстве и ее уравненияСкачать

11. Прямая в пространстве и ее уравнения

10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Видеоурок "Канонические уравнения прямой"Скачать

Видеоурок "Канонические уравнения прямой"

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 клСкачать

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 кл

Построение прямой, параллельной даннойСкачать

Построение прямой, параллельной данной

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Построение прямой, параллельной даннойСкачать

Построение прямой, параллельной данной
Поделиться или сохранить к себе: