Найти периметр треугольника описанного вокруг окружности

Как найти периметр треугольника

Найти периметр треугольника описанного вокруг окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Определение

Периметром принято называть длину всех сторон многоугольника. Периметр обозначается заглавной латинской буквой P. Под «P» удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах и ходе решении.

Важно, чтобы все параметры были переданы в одной единице длины, иначе мы не сможем подсчитать результат. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

В чем измеряется периметр:

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Как узнать периметр треугольника

Рассмотрим какие существуют формулы, и при каких известных исходных данных их можно применять.

Если известны три стороны, то периметр треугольника равен их сумме. Этот способ проходят во втором классе.

P = a + b + c, где a, b, c — длина стороны.

Если известна площадь и радиус вписанной окружности:

P = 2 * S : r, где S — площадь, r — радиус вписанной окружности.

Если известны две стороны и угол между ними, вычислить периметр треугольника можно так:

P = √ b 2 + с 2 — 2 * b * с * cosα + (b + с), где b, с — известные стороны, α — угол между известными сторонами.

Если известна одна сторона в равностороннем треугольнике:

P = 3 * a, где a — длина стороны.

Все стороны в равносторонней фигуре равны.

Если известна боковая сторона и основание в равнобедренном треугольнике:

P = 2 * a + b, где a — боковая сторона, b — основание.

Боковые стороны в равнобедренной фигуре равны.

Если известна боковая сторона и высота в равнобедренном треугольнике:

P = 2 * (√ a 2 + h 2 ) + 2 * a, где a — боковая сторона, h — высота.

Высотой принято называть отрезок, который вышел из вершины и опустился на основание. В равнобедренной фигуре высота делит основание пополам.

Если известны катеты в прямоугольном треугольнике:

P = √ a 2 + b 2 + (a + b), где a, b — катеты.

Катет — одна из двух сторон, которые образуют прямой угол.
Найти периметр треугольника описанного вокруг окружности

Если известны катет и гипотенуза в прямоугольном треугольнике:

P = √ c 2 — a 2 + (a + c), где a — любой катет, c — гипотенуза.

Гипотенуза — сторона, которая лежит напротив прямого угла.

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Найти периметр треугольника описанного вокруг окружности

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Найти периметр треугольника описанного вокруг окружности

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Найти периметр треугольника описанного вокруг окружности

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

Найти периметр треугольника описанного вокруг окружности

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Найти периметр треугольника описанного вокруг окружности

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Как найти периметр треугольника описанного около окружности

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Найти периметр треугольника описанного вокруг окружности

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Найти периметр треугольника описанного вокруг окружности

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Найти периметр треугольника описанного вокруг окружности

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

Найти периметр треугольника описанного вокруг окружности

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Найти периметр треугольника описанного вокруг окружности

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Найти периметр треугольника описанного вокруг окружности

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
help@ege-study.ru (круглосуточно)

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Видео:№146. Отрезки АВ и CD — диаметры окружности с центром О. Найдите периметр треугольника AOD, еслиСкачать

№146. Отрезки АВ и CD — диаметры окружности с центром О. Найдите периметр треугольника AOD, если

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса — от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги — 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Разделы: Математика

На итоговых уроках по геометрии времени на то, чтобы прорешать задачи по всему курсу в целом практически не остается. А в КИМы ЕГЭ традиционно включаются задачи, решение которых требует знаний планиметрии по теме «Вписанные и описанные окружности». Поэтому предложенный материал поможет не только вспомнить данную тему, но и систематизировать ранее полученные знания по решению планиметрических задач на вписанные и описанные окружности, а также подготовиться к решению подобных задач в ЕГЭ. При этом предполагается, что ученик хотя бы на минимальном уровне владеет всем курсом школьной геометрии (планиметрии).

Первым и важнейшим этапом решения геометрической задачи является построение чертежа. Нельзя научиться решать достаточно содержательные задачи, не выработав прочных навыков по изготовлению «хороших» чертежей, не выработав привычки (даже рефлекса) – не начинать решать задачу, пока не сделан «большой и красивый» чертеж. В качестве основного метода решения геометрических задач выдвигается алгебраический метод с составлением последующего алгоритма. Ставя во главу угла алгебраический метод, необходимо предостеречь от чрезмерного увлечения алгеброй и счетом, не забывать о том, что речь идет все же о геометрических задачах, а поэтому, работая над задачей, следует искать геометрические особенности, учиться смотреть и видеть геометрию. Выделив два слагаемых, определяющих умение решать геометрические задачи, – чертеж плюс метод, добавим сюда третье – владение определенными теоремами и опорными задачами, известными геометрическими фактами.

I. Необходимые теоремы и опорные задачи для окружности, вписанной в треугольник и четырехугольник, и окружности, описанной около треугольника и четырехугольника. (Приложение 1)

II. Решение задач по готовым чертежам (удобно воспользоваться кодоскопом).

При этом ученики устно объясняют ход решения задач, формулируют теоремы и опорные задачи, применяемые при решении задач по готовым чертежам.

Найти периметр треугольника описанного вокруг окружности

AB = BC

Отрезки касательных равны: BM = BK = 5
AB = BC = 12
MC = CN = 7, AC = 14, AK = AN = 7,
PABC = 12 + 12 + 14 = 38
Ответ: PABC = 38

Найти периметр треугольника описанного вокруг окружности

AB = 6,
АО = Найти периметр треугольника описанного вокруг окружности

Отрезки касательных равны: АВ = ВС
1) Найти периметр треугольника описанного вокруг окружности, Найти периметр треугольника описанного вокруг окружности
2) АВ = ВС, Найти периметр треугольника описанного вокруг окружности, т.к. ВО – биссектриса
3) Найти периметр треугольника описанного вокруг окружностиАВС – равносторонний, PABC = 6 • 3 = 18
Ответ: PABC = 18

Найти периметр треугольника описанного вокруг окружности

AD – диаметр окружности,
АВ = 3,
ВД = 4
1. Доказать: NM Найти периметр треугольника описанного вокруг окружностиAD
2. R = ?1. Т.к. AD – диаметр, то DB Найти периметр треугольника описанного вокруг окружностиAN и AC Найти периметр треугольника описанного вокруг окружностиDN, т.е. AC и DB – высоты Найти периметр треугольника описанного вокруг окружностиАND, тогда NK – высота, т.к. они пересекаются в одной точке.
Значит NM Найти периметр треугольника описанного вокруг окружностиAD.
2. AD = Найти периметр треугольника описанного вокруг окружности= 5, R = Найти периметр треугольника описанного вокруг окружности
Ответ: R = 2,5

Найти периметр треугольника описанного вокруг окружности

R = ?AC – диаметр окружности и гипотенуза прямоугольного Найти периметр треугольника описанного вокруг окружностиАВС, R = Найти периметр треугольника описанного вокруг окружности= 1,5
Ответ: R = 1,5

Найти периметр треугольника описанного вокруг окружности

AB = 24,
ОК = 5

О – точка пересечения серединных перпендикуляров к сторонам Найти периметр треугольника описанного вокруг окружности.
Найти периметр треугольника описанного вокруг окружностиBKO – прямоугольный, ВК = AK = 12,
КО = 5, ВО = Найти периметр треугольника описанного вокруг окружности= 13 = R
Ответ: R = 13

III. Решение задач.

1. Найти периметр прямоугольного треугольника, если радиус вписанной окружности 2 см, а гипотенуза 13 см.

Найти периметр треугольника описанного вокруг окружностиПусть AM = AN = x, тогда AC = x + 2, CB = 2 + 13 – x = 15 – x
(x + 2) 2 + (15 – x) 2 = 169
x 2 – 13x + 30 = 0
x1 = 10, x2 = 3; AC = 6, CB = 12; P = 30 см
Ответ: P = 30 см.

2. Радиус вписанной в прямоугольный треугольник окружности 3 см, О – центр вписанной окружности, Найти периметр треугольника описанного вокруг окружности, Найти периметр треугольника описанного вокруг окружности. Найти площадь треугольника.

Найти периметр треугольника описанного вокруг окружностиАО – биссектриса, Найти периметр треугольника описанного вокруг окружностиAKO – прямоугольный,
sin Найти периметр треугольника описанного вокруг окружности= sin 30 о = Найти периметр треугольника описанного вокруг окружности, АО = 6,
AN = AK = Найти периметр треугольника описанного вокруг окружности= 3Найти периметр треугольника описанного вокруг окружности, AC = 3 + 3Найти периметр треугольника описанного вокруг окружности,
tg 60 о = Найти периметр треугольника описанного вокруг окружности, CB = Найти периметр треугольника описанного вокруг окружности
SABC = Найти периметр треугольника описанного вокруг окружности= Найти периметр треугольника описанного вокруг окружности
Ответ: S = Найти периметр треугольника описанного вокруг окружностисм2.

3. Периметр треугольника 84. Точка касания вписанной окружности делит одну из сторон на отрезки 12 и 14. Найти радиус вписанной окружности и площадь Найти периметр треугольника описанного вокруг окружностиАВС, если ОВ = 18, О – центр вписанной окружности.

Найти периметр треугольника описанного вокруг окружностиP = 84, KB = BN = 16, ON = Найти периметр треугольника описанного вокруг окружности= Найти периметр треугольника описанного вокруг окружности= r
AB = 28, BC = 30, AC = 26
По формуле Герона: SABC = Найти периметр треугольника описанного вокруг окружности= 336
Ответ: r = Найти периметр треугольника описанного вокруг окружности; S = 336.

4. В равнобедренном треугольнике расстояние от центра вписанной окружности до вершины не равного угла 5 см. Большая сторона 10 см. Найти радиус вписанной окружности.

Найти периметр треугольника описанного вокруг окружностиOB = 5, Найти периметр треугольника описанного вокруг окружности,
OM = OB . Найти периметр треугольника описанного вокруг окружности= Найти периметр треугольника описанного вокруг окружности, BH = 5 + r,
AH = 2r, Найти периметр треугольника описанного вокруг окружностиAHB – прямоугольный, Найти периметр треугольника описанного вокруг окружности
4r 2 = 100 – (5 + r) 2 , r 2 + 2r – 15 = 0, r1 = – 5, r2 = 3
Ответ: r = 3 см.

5. Основание равнобедренного треугольника, вписанного в окружность радиуса 5 см, равно 6 см. Найти периметр треугольника.

Найти периметр треугольника описанного вокруг окружностиНайти периметр треугольника описанного вокруг окружностиAHO – прямоугольный: OH = 4, BH = 4 + 5 =9,
AB = BC = Найти периметр треугольника описанного вокруг окружности= Найти периметр треугольника описанного вокруг окружности
P = Найти периметр треугольника описанного вокруг окружности
Ответ: P = Найти периметр треугольника описанного вокруг окружностисм.

6. Периметр треугольника АВС равен 72 см. AB = BC, AB:AC = 13:10. Найти радиус описанной около треугольника окружности.

Найти периметр треугольника описанного вокруг окружностиAB + BC + AC = 72, Найти периметр треугольника описанного вокруг окружности, Найти периметр треугольника описанного вокруг окружности
AC = 20, AB = BC = Найти периметр треугольника описанного вокруг окружности= 26, BH = Найти периметр треугольника описанного вокруг окружности= 24
BN = NA = 13, Найти периметр треугольника описанного вокруг окружности
Найти периметр треугольника описанного вокруг окружности, R = Найти периметр треугольника описанного вокруг окружности
Ответ: R = Найти периметр треугольника описанного вокруг окружностисм.

7. Основание тупоугольного равнобедренного треугольника равно 24 см, а радиус описанной окружности 13 см. Найти боковую сторону треугольника.

Найти периметр треугольника описанного вокруг окружностиOC = 13, AC = 24, HC = 12
Найти периметр треугольника описанного вокруг окружностиHOC – прямоугольный, OH = Найти периметр треугольника описанного вокруг окружности= 5
BH = BO – OH =13 – 5 = 8
Найти периметр треугольника описанного вокруг окружностиBHC – прямоугольный, BC = Найти периметр треугольника описанного вокруг окружности
Ответ: Найти периметр треугольника описанного вокруг окружностисм.

8. Окружность, диаметром которой служит АС треугольника АВС, проходит через точку пересечения медиан этого треугольника. Найти отношение длины стороны АС к длине проведенной к ней медианы.

Найти периметр треугольника описанного вокруг окружностиAO = OC = R = OM, BM = 2R,
BO = 3R, Найти периметр треугольника описанного вокруг окружности
Ответ: Найти периметр треугольника описанного вокруг окружности.

9. Найдите площадь равнобедренной трапеции, описанной около окружности с радиусом 4, если известно, что боковая сторона трапеции равна 10.

Найти периметр треугольника описанного вокруг окружностиSABCD = Найти периметр треугольника описанного вокруг окружности
Т.к. окружность вписанная, то AB + CD = AD + BC = 20
h = 2r = 8, Найти периметр треугольника описанного вокруг окружности, SABCD = 10 • 8 = 80
Ответ: 80.

10. Дан ромб ABCD. Окружность, описанная около треугольника ABD, пересекает большую диагональ ромба AC в точке E. Найдите CE, если AB = Найти периметр треугольника описанного вокруг окружности, BD = 16.

Найти периметр треугольника описанного вокруг окружностиНайти периметр треугольника описанного вокруг окружностиAOB – прямоугольный: AO = Найти периметр треугольника описанного вокруг окружности= 16
AD = 32
По теореме об отрезках пересекающихся хорд:
BO • OD = AO • OE, 8 • 8 = 16 • OE, OE = 4, CE = 16 – 4 = 12
Ответ: 12.

IV. Задачи для самостоятельного решения.

1. Радиус окружности, вписанной в прямоугольный треугольник, равен 2 см, а радиус описанной окружности равен 5 см. Найдите больший катет треугольника.

2. Около равнобедренного треугольника с основанием АС и углом при основании 75о описана окружность с центром О. Найдите ее радиус, если площадь треугольника ВОС равна 16.

3. Найдите радиус окружности, вписанной в остроугольный треугольник АВС, если высота BH равна 12 и известно, что Найти периметр треугольника описанного вокруг окружности, Найти периметр треугольника описанного вокруг окружности.

4. Один из катетов прямоугольного треугольника равен 15, а проекция второго катета на гипотенузу равна 16. Найдите диаметр окружности, описанной около этого треугольника.

5. В равнобедренный треугольник АВС вписана окружность. Параллельно его основанию АС проведена касательная к окружности, пересекающая боковые стороны в точках D и E. Найдите радиус окружности, если DE = 8, AC = 18.

6. Около треугольника ABC описана окружность. Медиана треугольника AM продлена до пересечения с окружностью в точке K. Найдите сторону AC, если AM= 18, MK = 8, BK = 10.

7. Окружность, вписанная в равнобедренный треугольник, касается его боковых сторон в точках K и A. Точка K делит сторону этого треугольника на отрезки 15 и 10, считая от основания. Найдите длину отрезка KA.

8. Угол В треугольника АВС равен 60 о , радиус окружности, описанной около АВС, равен 2. Найти радиус окружности, проходящей через точки А и С и центр окружности, вписанной в АВС.

9. Стороны треугольника равны 5, 6 и 7. Найти отношение отрезков, на которые биссектриса большего угла этого треугольника разделена центром окружности, вписанной в треугольник.

10. Радиус окружности, вписанной в прямоугольный треугольник, равен полуразности его катетов. Найти отношение большего катета к меньшему.

Ответ: (Найти периметр треугольника описанного вокруг окружности).

11. Диагонали четырехугольника ABCD, вписанного в окружность, пересекаются в точке М, прямые AB и CD пересекаются в точке N. Известно, что Найти периметр треугольника описанного вокруг окружности, Найти периметр треугольника описанного вокруг окружности. Найти Найти периметр треугольника описанного вокруг окружностии Найти периметр треугольника описанного вокруг окружности.

12. Высоты AH и BK остроугольного треугольника ABC пересекаются в точке M, Найти периметр треугольника описанного вокруг окружности. Найдите градусную меру угла ABO, где O – центр окружности, описанной около треугольника ABC.

13. Около окружности описана равнобочная трапеция с основаниями 5 и 3. Найти радиус окружности.

Ответ: (Найти периметр треугольника описанного вокруг окружности).

14. В равнобедренный Найти периметр треугольника описанного вокруг окружностиАВС с основанием BC вписана окружность. Она касается стороны AB в точке M. Найдите радиус окружности, если AM = 6, BM = 24.

15. Дан прямоугольный треугольник ABC с прямым углом C. Через центр O вписанной в треугольник окружности проведен луч BO, пересекающий катет AC в точке M. Известно, что AM = Найти периметр треугольника описанного вокруг окружности, Найти периметр треугольника описанного вокруг окружности. Найдите гипотенузу и радиус окружности, описанной около треугольника.

Найти периметр треугольника описанного вокруг окружности

Окружность вписана в треугольник. В данной статье собрал для вас задачи, в которых даётся треугольник с вписанной в него или описанной около него окружностью. В условии ставится вопрос о нахождении радиуса окружности или стороны треугольника.

Данные задания удобно решать используя представленные формулы. Рекомендую их выучить, бывают очень полезны не только при решении этого типа заданий. Одна формула выражает связь радиуса вписанной в треугольник окружности с его сторонами и площадью, другая радиус описанной около треугольника окружности также с его сторонами и площадью:

Найти периметр треугольника описанного вокруг окружности

где a, b, c – стороны треугольника

S – площадь треугольника

Найти периметр треугольника описанного вокруг окружности

Найти периметр треугольника описанного вокруг окружности

27900. Боковая сторона равнобедренного треугольника равна 1, угол при вершине, противолежащей основанию, равен 120 0 . Найдите диаметр описанной окружности этого треугольника.

Найти периметр треугольника описанного вокруг окружности

Здесь окружность описана около треугольника.

Диаметр мы сможем найти, если будет известен радиус. Используем формулу радиуса описанной около треугольника окружности:

Найти периметр треугольника описанного вокруг окружности

где a, b, c – стороны треугольника

S – площадь треугольника

Две стороны нам известны (боковые стороны равнобедренного треугольника), третью мы можем вычислить используя теорему косинусов:

Найти периметр треугольника описанного вокруг окружности

Теперь вычислим площадь треугольника:

Найти периметр треугольника описанного вокруг окружности

*Использовали формулу (2) из этой статьи .

Найти периметр треугольника описанного вокруг окружности

Таким образом диаметр будет равен 2.

Это устные вычисления. Для тех кто имеет навык решения заданий с вписанным в окружность шестиугольником, тот сразу определит, что стороны треугольника АС и ВС «совпадают» со сторонами вписанного в окружность шестиугольника (угол шестиугольника как раз равен 120 0 , как и в условии задачи). А далее на основании того, что сторона вписанного в окружность шестиугольника равна радиусу этой окружности не сложно сделать вывод о том, что диаметр будет равен 2АС, то есть двум.

Подробнее о шестиугольнике посмотрите информацию в этой статье (п.5).

Найти периметр треугольника описанного вокруг окружности

Найти периметр треугольника описанного вокруг окружности

Воспользуемся формулой радиуса окружности вписанной в треугольник:

Найти периметр треугольника описанного вокруг окружности

где a, b, c – стороны треугольника

S – площадь треугольника

Нам неизвестны ни стороны треугольника, ни его площадь. Обозначим катеты как х, тогда гипотенуза будет равна:

Найти периметр треугольника описанного вокруг окружности

А площадь треугольника будет равна 0,5х 2 .

Найти периметр треугольника описанного вокруг окружности

Таким образом, гипотенуза будет равна:

Найти периметр треугольника описанного вокруг окружности

В ответе требуется записать:

Найти периметр треугольника описанного вокруг окружности

Найти периметр треугольника описанного вокруг окружности

Найти периметр треугольника описанного вокруг окружности

Воспользуемся формулой радиуса окружности вписанной в треугольник:

Найти периметр треугольника описанного вокруг окружности

где a, b, c – стороны треугольника

S – площадь треугольника

Две стороны известны (это катеты), можем вычислить третью (гипотенузу), также можем вычислить и площадь.

По теореме Пифагора:

Найти периметр треугольника описанного вокруг окружности

Найти периметр треугольника описанного вокруг окружности

Найти периметр треугольника описанного вокруг окружности

Найти периметр треугольника описанного вокруг окружности

Найти периметр треугольника описанного вокруг окружности

Воспользуемся формулой радиуса окружности вписанной в треугольник:

Найти периметр треугольника описанного вокруг окружности

где a, b, c – стороны треугольника

S – площадь треугольника

Известны все стороны, вычислим и площадь. Её мы можем найти по формуле Герона:

Найти периметр треугольника описанного вокруг окружности

Найти периметр треугольника описанного вокруг окружности

Найти периметр треугольника описанного вокруг окружности

Найти периметр треугольника описанного вокруг окружности

27624. Периметр треугольника равен 12, а радиус вписанной окружности равен 1. Найдите площадь этого треугольника.

Найти периметр треугольника описанного вокруг окружности

27625. Площадь треугольника равна 24, а радиус вписанной окружности равен 2. Найдите периметр этого треугольника.

Найти периметр треугольника описанного вокруг окружности

27626. Площадь треугольника равна 54, а его периметр 36. Найдите радиус вписанной окружности.

Найти периметр треугольника описанного вокруг окружности

27923. Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника.

Найти периметр треугольника описанного вокруг окружности

27932. Катеты равнобедренного прямоугольного треугольника равны Найти периметр треугольника описанного вокруг окружности. Найдите радиус окружности, вписанной в этот треугольник.

Найти периметр треугольника описанного вокруг окружности

Если в условии дан треугольник и вписанная или описанная окружность, и речь идёт о сторонах, площади, радиусе, то сразу вспомните об указанных формулах и пробуйте использовать их при решении. Если не получается, то тогда уже ищите другие способы решения.

💡 Видео

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Найти площадь квадрата описанного около окружности радиуса 19Скачать

Найти площадь квадрата описанного около окружности радиуса 19

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать

Задача 6 №27900 ЕГЭ по математике. Урок 128

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Решение задачи №1 из ЕГЭ математикаСкачать

Решение задачи №1 из ЕГЭ математика

Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Треугольник и окружность #shortsСкачать

Треугольник и окружность #shorts

Найдите площадь квадрата, описанного вокруг ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Найдите площадь квадрата, описанного вокруг ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

№693. В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника,Скачать

№693. В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника,
Поделиться или сохранить к себе: