Найти массу четверти окружности радиуса

Приложения определенного интеграла к решению некоторых задач механики и физики

1. Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y=f(x), a≤x≤b, и имеет плотность 1) <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

002.gif» />=<img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

002.gif» />(x), то статические моменты этой дуги Mx и My относительно координатных осей Ox и Oy равны

<img src="http://ic3.static.km.ru/img/61260

моменты инерции IХ и Iу относительно тех же осей Ох и Оу вычисляются по формулам

<img src="http://ic3.static.km.ru/img/61260

а координаты центра масс <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

009.gif» /> и <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

011.gif» /> — по формулам

<img src="http://ic3.static.km.ru/img/61260

где l— масса дуги, т. е.

<img src="http://ic3.static.km.ru/img/61260

Пример 1. Найти статические моменты и моменты инерции относительно осей Ох

и Оу дуги цепной линии y=chx при 0≤x≤1.

1) Всюду в задачах, где плотность не указана, предполагается, что кривая однородна и <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

◄ Имеем: <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

<img src="http://ic3.static.km.ru/img/61260

Пример 2. Найти координаты центра масс дуги окружности x=acost, y=asint, расположенной в первой четверти.

◄ Имеем: <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

В приложениях часто оказывается полезной следующая

Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности, описываемой ее центром масс.

Пример 3. Найти координаты центра масс полуокружности <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

◄Вследствие симметрии <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

026.gif» />. При вращении полуокружности вокруг оси Ох получается сфера, площадь поверхности которой равна <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

028.gif» />, а длина полуокружности равна па. По теореме Гульдена имеем <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

Отсюда <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

032.gif» />, т.е. центр масс C имеет координаты C<img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах 4—7.

Пример 4. Скорость прямолинейного движения тела выражается формулой <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

036.gif» /> (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.

◄ Так как путь, пройденный телом со скоростью <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/61260

038.gif» />(t) за отрезок времени [t1,t2], выражается интегралом

<img src="http://ic3.static.km.ru/img/61260

<img src="http://ic3.static.km.ru/img/61260

Пример 5. Какую работу необходимо затратить для того, чтобы тело массы m поднять с поверхности Земли, радиус которой R, на высоту /i? Чему равна работа, если тело удаляется в бесконечность?

Видео:Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Найти массу четверти окружности радиуса

1. Вычисление объема тела

Пусть функция f ( x ; y ) ≥ 0. Рассмотрим тело, ограниченное поверхностью z = f ( x ; y ), плоскостью z = 0 и цилиндрической поверхно­стью, образующие которой па­раллельны оси 0 z , а направ­ляющей служит граница об­ласти D . Как было показано выше, согласно формуле (6.3) объем данного тела равен

Пример 6.9. Вычислить объём тела, ограниченного параболоидом z = x 2 + y 2 + 1, плоскостью x + y –3=0 и координатными плоскостями.

Решение. Основанием тела служит треугольник ОАВ. Область D в данном случае определяется неравенствами:

Найти массу четверти окружности радиуса

2. Вычисление площади плоской фигуры

Если положить в формуле (6.18) f ( x , y )=1, то цилиндрическое тело «превратится» в прямой цилиндр с высотой h = 1. Объем такого цилиндра,

как известно, численно равен площади S основания D . Получаем формулу для вычисления площади S области D :

или, в полярных координатах,

Пример 6.10. Вычислить площадь фигуры, ограниченной прямой y = 2 x + 1 и параболой y = x 2 + 1.

Решение. Решая совместно систему

Применяя формулу (6.19), будем иметь:

Найти массу четверти окружности радиуса

Найти массу четверти окружности радиуса

Решение. Переходим к полярной системе координат, полагая x = r cos φ и y = r sin φ ; тогда получаем

Найти массу четверти окружности радиуса

3. Вычисление массы плоской фигуры (пластины)

Масса плоской пластинки D с переменной плотностью γ ( x , y ) находится по формуле

4. Определение статических моментов и координат центра тяжести плоской фигуры

Статические моменты фигуры D относительно осей 0 x и 0 y могут быть вычислены по формулам

а координаты центра масс фигуры – по формулам

Статические моменты широко используются в сопротивлении материалов и других технических науках.

5. Определение моментов инерции плоской фигуры

Моментом инерции материальной точки массы m относительно оси l называется произведение массы m на квадрат расстояния d точки до оси, т.е. Найти массу четверти окружности радиуса . Моменты инерции плоской фигуры относительно 0 x и 0 y могут быть вычислены по формулам:

Момент инерции фигуры относительно начала координат – по формуле

Пример 6.12 . Найти массу, статические моменты и координаты центра тяжести фигуры, лежащей в первой четверти, ограниченной эллипсом Найти массу четверти окружности радиуса и координатными осями. Поверхностная плотность в каждой точке фигуры пропорциональна произведению координат точки.

Решение. По формуле (6.21) находим массу пластины. По условию, γ ( x , y )= k xy , где k – коэффициент пропорциональности.Тогда

Находим статические моменты пластинки по формулам (6.22):

Найти массу четверти окружности радиуса

Находим координаты центра тяжести пластинки, используя формулы (6.23):

Найти массу четверти окружности радиуса

6. Поверхностный интеграл I рода

Обобщением двойного интеграла является поверхностный интеграл. Пусть в трехмерном пространстве О xyz в точках некоторой поверхности площади S определена непрерывная функция u = f ( x ; y ; z ). Разобьем поверхность на конечное число n частей Si , площади которых равны Si , а диаметры – di , Найти массу четверти окружности радиуса . Выберем в каждой части Si произвольную точку Mi ( xi ; yi ; zi ) и составим сумму произведений вида

Она называется интегральной суммой для функции f ( x ; y ; z ) по поверхности S . Если при Найти массу четверти окружности радиуса интегральная сумма (6.26) имеет предел, который не зависит ни от способа разбиения поверхности S, ни от выбора точек Mi ( xi ; yi ; zi ), то он называется поверхностным интегралом I рода от функции f ( x ; y ; z ) по поверхности S и обозначается Найти массу четверти окружности радиуса . Следовательно,

Теорема 6.3 (о существовании поверхностного интеграла). Если поверхность S гладкая (в каждой ее точке существует касательная плоскость, которая непрерывно меняется с перемещением точки по поверхности), а функция f ( x ; y ; z ) непрерывна на этой поверхности, то поверхностный интеграл существует Найти массу четверти окружности радиуса

Формула Найти массу четверти окружности радиуса (6.28)

выражает интеграл по поверхности S через двойной интеграл по проекции S на плоскость x 0 y . Отметим, что если поверхность S задана уравнением вида y=y(x;z) или x=x(y;z), то аналогично получим:

где D 1 и D 2 – проекции поверхности S на координатные плоскости xО z и y О z соответственно.

Пример 6.13. Вычислить Найти массу четверти окружности радиуса , где S – часть цилиндрической поверхности Найти массу четверти окружности радиуса , отсеченной плоскостями z = 0 и z = 3.

Решение . Из уравнения заданной цилиндрической поверхности выразим Найти массу четверти окружности радиуса и учтём, что при x = 0 в плоскости x О y : Найти массу четверти окружности радиуса . Так как частные производные равны Найти массу четверти окружности радиуса , то согласно формуле (6.30), имеем

Найти массу четверти окружности радиуса

6.1. Площадь поверхности

Если поверхность S задана уравнением z = f ( x ; y ), a ее проекция на плоскость x 0 y есть область D , в которой z = f ( x ; y ), zx ( x ; y ) и zy ( x ; y ) – непрерывные функции, то ее площадь S вычисляется по формуле:

Пример 6.14. Вычислить площадь части плоскости x + y + z = 4, вырезаемой цилиндром x 2 + y 2 = 4 (рис. 6.10).

Найти массу четверти окружности радиуса

Чтобы вычислить этот интеграл, введём полярные координаты. Область D определяется: Найти массу четверти окружности радиуса . Следовательно,

Найти массу четверти окружности радиуса

Кроме того, поверхностный интеграл применяют для вычисления массы, координат центра масс, моментов инерции материальных поверхностей с известной поверхностной плотностью распределения массы γ =γ ( x ; y ; z ) . Все эти величины определяются одним и тем же способом:

– данную область разбивают на конечное число мелких частей;

– делают для каждой такой части предположения, упрощающие задачу;

– находят приближенное значение искомой величины;

– переходят к пределу при неограниченном измельчении разбиения области.

Проиллюстрируем описанный способ на примере определения массы материальной поверхности.

6.2. Масса поверхности

Пусть плотность распределения массы материальной поверхности есть γ ( x ; y ; z ) . Для нахождения массы поверхности:

1. Разбиваем поверхность S на n частей Si , Найти массу четверти окружности радиуса , площадь которых обозначим Si .

2. Выберем произвольную точку Mi ( xi ; yi ; zi ) в каждой области Si . Предполагаем, что в переделах области Si плотность постоянна и равна её

4. Суммируя mi по всей области, получаем: Найти массу четверти окружности радиуса .

5. За точное значение массы материальной поверхности S принимается предел, к которому стремится полученное приближенное значение при стремлении к нулю диаметров областей Si , то есть

6.3. Моменты и центр тяжести поверхности. С татические моменты, координаты центра тяжести, моменты инерции материальной поверхности S находятся по соответствующим формулам:

Найти массу четверти окружности радиуса

Пример 6.15. Вычислить координаты центра тяжести однородной поверхности параболоида z = x 2 + y 2 , ограниченной плоскостью z = 1.

Решение. Вершина заданного параболоида совпадает с началом координат. Так как поверхность однородная (постоянная плотность массы), то, основываясь на ее симметрии, можно сделать вывод, что центр тяжести расположен на оси 0 z . Тогда xc = 0, yc = 0 и по формуле (6.36) аппликата Найти массу четверти окружности радиуса . Пересечем параболоид поверхностью z = 1, спроектируем линию пересечения на плоскость x 0 y – получим окружность x 2 + y 2 =1 в качестве области D . Вычислим элемент поверхности параболоида z = x 2 + y 2 по формуле (6.31), учитывая, что Найти массу четверти окружности радиуса :

Аналогично, переходя к полярным координатам на плоскости x 0 y , получим:

Видео:Найдите массу дуги окружности ➜ Физический смысл криволинейного интеграла 1-го рода (по длине дуги)Скачать

Найдите массу дуги окружности ➜ Физический смысл криволинейного интеграла 1-го рода (по длине дуги)

Приложения криволинейных интегралов.

1. Площадь области D, ограниченной замкнутым контуром L, находится по формуле:

( 24)

Найти массу четверти окружности радиуса

где направление обхода контура L выбрано так, что область D остается все время слева от пути интегрирования.

2. Пусть L есть плоская кривая с линейной плотностью массы m(x, y),
тогда

а) масса m кривой L вычисляется по формуле

Найти массу четверти окружности радиуса

б) координаты центра тяжести кривой L вычисляются по формулам:

( 26)

Найти массу четверти окружности радиусаНайти массу четверти окружности радиуса

в) моменты инерции Ix, Iy и I0 соответственно относительно осей Ox, Oy и начала координат равны:

Найти массу четверти окружности радиуса Найти массу четверти окружности радиуса Найти массу четверти окружности радиуса( 27)

3. Пусть Найти массу четверти окружности радиуса= P(x, y, z) Найти массу четверти окружности радиуса+Q(x, y, z) Найти массу четверти окружности радиуса+ R(x, y, z) Найти массу четверти окружности радиусаесть переменная сила, совершающая работу W вдоль пути L, и функции P(x, y, z), Q(x, y, z) и R(x, y, z) непрерывны на кривой L.

( 28)

Найти массу четверти окружности радиуса

Найти массу тонкого стержня, имеющего форму линии x 2 + y 2 = 1, y > 0, если его линейная плотность в точке M(x, y) равна m(x, y) = 1 + (1/2)y.

В данном случае линия L есть верхняя половина единичной окружности, которую легко задать параметрически: x = cost, y = sint, 0

Воспользовавшись известными параметрическими уравнениями прямой, запишем уравнения линии, по которой перемещается точка приложения силы:

Найти массу четверти окружности радиусаÞx = 1 + t, y = 1 + 2t, z = 1 + 3t, 0 3 t,
y = asin 3 t, 0

🎦 Видео

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Криволинейный интеграл по длине дуги ➜ Криволинейный интеграл 1-го родаСкачать

Криволинейный интеграл по длине дуги ➜ Криволинейный интеграл 1-го рода

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Математический анализ, 47 урок, Криволинейные интегралы первого родаСкачать

Математический анализ, 47 урок, Криволинейные интегралы первого рода

КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Физика - движение по окружностиСкачать

Физика - движение по окружности

Радиус описанной окружностиСкачать

Радиус описанной окружности

Масса дугиСкачать

Масса дуги

Масса через двойной интегралСкачать

Масса через двойной интеграл

Криволинейный интеграл первого родаСкачать

Криволинейный интеграл первого рода

Математический анализ, 48 урок, Криволинейные интегралы второго родаСкачать

Математический анализ, 48 урок, Криволинейные интегралы второго рода

Двойной интеграл в полярных координатахСкачать

Двойной интеграл в полярных координатах

магнитный биллиардСкачать

магнитный биллиард

Формула Стокса.ЦиркуляцияСкачать

Формула Стокса.Циркуляция

Площадь фигуры через двойной интеграл в полярных координатахСкачать

Площадь фигуры через двойной интеграл в полярных координатах

Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)Скачать

Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)

Криволинейный интеграл II рода вдоль плоской кривойСкачать

Криволинейный интеграл II рода вдоль плоской кривой
Поделиться или сохранить к себе: