Оси трапеции и треугольника

Ось симметрии — что это такое? Фигуры, имеющие ось симметрии

Что же такое ось симметрии? Это множество точек, которые образуют прямую, являющуюся основой симметрии, то есть, если от прямой отложили определенное расстояние с одной стороны, то оно отразится и в другую сторону в таком же размере. Осью может выступать все, что угодно, — точка, прямая, плоскость и так далее. Но об этом лучше говорить на наглядных примерах.

Видео:ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 класс

Симметрия

Для того чтобы понять, что такое ось симметрии, нужно вникнуть в само определение симметрии. Это соответствие определенного фрагмента тела относительно какой-либо оси, когда его структура неизменна, а свойства и форма такого объекта остаются прежними относительно его преобразований. Можно сказать, что симметрия — свойство тел к отображению. Когда фрагмент не может иметь подобного соответствия, это называется асимметрией или же аритмией.

Оси трапеции и треугольника Вам будет интересно: Как сдать физику и что нужно для этого сделать?

Некоторые фигуры не имеют симметрии, поэтому они и называются неправильными или же асимметричными. К таким относятся различные трапеции (кроме равнобедренной), треугольники (кроме равнобедренного и равностороннего) и другие.

Оси трапеции и треугольника Вам будет интересно: Гибкость: определение, средства и методы развития гибкости

Оси трапеции и треугольника

Видео:Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Трапеция. Практическая часть - решение задачи. 8 класс.

Виды симметрии

Также обсудим некоторые виды симметрии, чтобы до конца изучить это понятие. Их разделяют так:

  • Осевая. Осью симметрии является прямая, проходящая через центр тела. Как это? Если наложить части вокруг оси симметрии, то они будут равными. Это можно увидеть на примере сферы.
  • Зеркальная. Осью симметрии здесь является прямая, относительно которой тело можно отразить и получить обратное отображение. Например, крылья бабочки зеркально симметричны.
  • Центральная. Осью симметрии является точка в центре тела, относительно которой при всех преобразованиях части тела равны при наложении.

    Видео:Средняя линия треугольника и трапеции. 8 класс.Скачать

    Средняя линия треугольника и трапеции. 8 класс.

    История симметрии

    Само понятие симметрии часто бывает отправной точкой в теориях и гипотезах ученых древних времен, которые были уверены в математической гармонии мироздания, а также в проявлении божественного начала. Древние греки свято верили в то, что Вселенная симметрична, потому что симметрия великолепна. Человек очень давно использовал идею симметрии в своих познаниях картины мироздания.

    В V веке до нашей эры Пифагор считал сферу самой совершенной формой и думал, что Земля имеет форму сферы и таким же образом движется. Также он полагал, что Земля движется по форме какого-то «центрального огня», вокруг которого должны были вращаться 6 планет (известные на то время), Луна, Солнце и все другие звезды.

    А философ Платон считал многогранники олицетворением четырех природных стихий:

    • тетраэдр — огонь, так как его вершина направлена вверх;
    • куб — земля, так как это самое устойчивое тело;
    • октаэдр — воздух, нет каких-либо объяснений;
    • икосаэдр — вода, так как тело не имеет грубых геометрических форм, углов и так далее;
    • образом всей Вселенной являлся додекаэдр.

    Из-за всех этих теорий правильные многогранники называют телами Платона.

    Симметрией пользовались еще зодчие Древней Греции. Все их постройки были симметричны, об этом свидетельствуют изображения древнего храма Зевса в Олимпии.

    Оси трапеции и треугольника

    Голландский художник М. К. Эшер также прибегал к симметрии в своих картинах. В частности, мозаика из двух птиц, летящих навстречу, стала основой картины «День и ночь».

    Также и наши искусствоведы не пренебрегали правилами симметрии, что видно на примере картины Васнецова В. М. «Богатыри».

    Что уж там говорить, симметрия — ключевое понятие для всех деятелей искусства на протяжении многих веков, но в XX веке ее смысл оценили также все деятели точных наук. Точным свидетельством являются физические и космологические теории, например, теория относительности, теория струн, абсолютно вся квантовая механика. Со времен Древнего Вавилона и, заканчивая передовыми открытиями современной науки, прослеживаются пути изучения симметрии и открытия ее основных законов.

    Видео:Площадь параллелограмма треугольника и трапецииСкачать

    Площадь параллелограмма треугольника и трапеции

    Симметрия геометрических фигур и тел

    Рассмотрим внимательнее геометрические тела. Например, осью симметрии параболы является прямая, проходящая через ее вершину и рассекающая данное тело пополам. У этой фигуры имеется одна единственная ось.

    А с геометрическими фигурами дело обстоит иначе. Ось симметрии прямоугольника — также прямая, но их несколько. Можно провести ось параллельно отрезкам ширины, а можно — длины. Но не все так просто. Вот прямая не имеет осей симметрии, так как ее конец не определен. Могла существовать только центральная симметрия, но, соответственно, и таковой не будет.

    Оси трапеции и треугольника

    Следует также знать то, что некоторые тела имеют множество осей симметрии. Об этом догадаться несложно. Даже не нужно говорить о том, сколько осей симметрии имеет окружность. Любая прямая, проходящая через центр окружности, является таковой и этих прямых — бесконечное множество.

    У некоторые четырехугольников может быть две оси симметрии. Но вторые должны быть перпендикулярны. Это происходит в случае с ромбом и прямоугольником. В первом оси симметрии — диагонали, а во втором — средние линии. Множество таковых осей только у квадрата.

    Видео:Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

    Определение натуральной величины треугольника АВС методом замены плоскостей проекции

    Симметрия в природе

    Природа поражает множеством примеров симметрии. Даже наше человеческое тело устроено симметрично. Два глаза, два уха, нос и рот расположены симметрично относительно центральной оси лица. Руки, ноги и все тело в общем устроено симметрично оси, проходящей через середину нашего тела.

    Оси трапеции и треугольника

    А сколько примеров окружает нас постоянно! Это цветы, листья, лепестки, овощи и фрукты, животные и даже соты пчел имеют ярко выраженную геометрическую форму и симметрию. Вся природа устроена упорядоченно, всему есть свое место, что еще раз подтверждает совершенство законов природы, в которых симметрия — основное условие.

    Видео:Площадь параллелограмма, треугольника, трапецииСкачать

    Площадь параллелограмма, треугольника, трапеции

    Вывод

    Нас постоянно окружают какие-либо явления и предметы, например, радуга, капля, цветы, лепестки и так далее. Их симметрия — очевидна, в какой-то степени она обусловлена гравитацией. Часто в природе под понятием «симметрия» понимают регулярную смену дня и ночи, времен года и так далее.

    Оси трапеции и треугольника

    Подобные свойства наблюдаются везде, где есть порядок и равенство. Также и сами законы природы — астрономические, химические, биологические и даже генетические подчинены определенным принципам симметрии, так как имеют совершенную системность, а значит, сбалансированность имеет всеохватывающий масштаб. Следовательно, осевая симметрия — один из основополагающих законов мироздания в целом.

    Видео:Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать

    Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронтали

    Осевая и центральная симметрия

    Оси трапеции и треугольника

    О чем эта статья:

    Видео:КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

    КАК найти площадь трапеции? Геометрия 8 класс | Математика

    Что такое симметрия

    Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.

    Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.

    Оси трапеции и треугольника

    Центр симметрии — это точка, в которой пересекаются все оси симметрии.

    Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.

    Рассмотрите фигуры с осевой и центральной симметрией.

    • Ось симметрии угла — биссектриса.
    • Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
    • Оси симметрии прямоугольника проходят через середины его сторон.
    • У ромба две оси симметрии — прямые, содержащие его диагонали.
    • У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
    • Ось симметрии окружности — любая прямая, проведенная через ее центр.

    Оси трапеции и треугольника

    Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.

    Видео:Геометрия 8 класс. Площадь трапецииСкачать

    Геометрия 8 класс. Площадь трапеции

    Осевая симметрия

    Вот как звучит определение осевой симметрии:

    Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

    При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

    Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

    Оси трапеции и треугольника

    В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

    Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

    Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

    Оси трапеции и треугольника

    1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
    2. Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
    3. С другой стороны прямой отложим такие же расстояния.
    4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
    5. Получаем два треугольника, симметричных относительно оси симметрии.

    Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

    Оси трапеции и треугольника

    1. Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
    2. Измеряем расстояние от вершин до точек на прямой.
    3. Откладываем такие же расстояния на другой стороне оси симметрии.
    4. Соединяем точки и строим треугольник A1B1C1.

    Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

    Оси трапеции и треугольника

    1. Проводим через точку А прямую, перпендикулярную прямой l.
    2. Проводим через точку В прямую, перпендикулярную прямой l.
    3. Измеряем расстояния от точек А и В до прямой l.
    4. Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
    5. Соединяем точки A1 и B1.

    Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!

    Видео:СРЕДНЯЯ ЛИНИЯ ТРАПЕЦИИ #математика #егэ #shorts #профильныйегэСкачать

    СРЕДНЯЯ ЛИНИЯ ТРАПЕЦИИ  #математика #егэ  #shorts #профильныйегэ

    Центральная симметрия

    Теперь поговорим о центральной симметрии — вот ее определение:

    Центральной симметрией называется симметрия относительно точки.

    Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.

    Оси трапеции и треугольника

    Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

    Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

    Оси трапеции и треугольника

    1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
    2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
    3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
    4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

    Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

    Оси трапеции и треугольника

    1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
    2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
    3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
    4. Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
    5. Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.

    Видео:Самый короткий тест на интеллект Задача Массачусетского профессораСкачать

    Самый короткий тест на интеллект Задача Массачусетского профессора

    Задачи на самопроверку

    В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!

    Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.

    Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:

    Симметрия относительно прямой — осевая
    Симметрия относительно точки — центральная

    Оси трапеции и треугольника

    Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
    симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.

    Оси трапеции и треугольника

    Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.

    Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.

    Видео:8 класс, 6 урок, ТрапецияСкачать

    8 класс, 6 урок, Трапеция

    Осевая симметрия

    Осевая симметрия — это симметрия относительно прямой.

    Оси трапеции и треугольникаПусть дана некоторая прямая g.

    Чтобы построить точку, симметричную некоторой точке A относительно прямой g, надо:

    Оси трапеции и треугольника1) Провести из точки A к прямой g перпендикуляр AO.

    Оси трапеции и треугольника2) На продолжении перпендикуляра с другой стороны от прямой g отложить отрезок OA1, равный отрезку AO: OA1=AO.

    Полученная точка A1 симметрична точке A относительно прямой g.

    Прямая g называется осью симметрии.

    Таким образом, точки A и A1 симметричны относительно прямой g, если эта прямая проходит через середину отрезка AA1 и перпендикулярна к нему.

    Если точка A лежит на прямой g, то симметричная ей точка есть сама точка A.

    Преобразование фигуры F в фигуру F1, при котором каждая её точка A переходит в точку A1, симметричную относительно данной прямой g, называется преобразованием симметрии относительно прямой g.

    Фигуры F и F1 называются фигурами, симметричными относительно прямой g.

    Оси трапеции и треугольникаЧтобы построить треугольник, симметричный данному относительно прямой g, достаточно построить точки, симметричные вершинам треугольника, и соединить их отрезками.

    Например, треугольники ABC и A1B1C1 симметричны относительно прямой g.

    Если преобразование симметрии относительно прямой g переводит фигуру в себя, то такая фигура называется симметричной относительно прямой g, а прямая g называется её осью симметрии.

    Симметричная фигура своей осью симметрии делится на две равные половины. Если симметричную фигуру нарисовать на бумаге, вырезать и согнуть по оси симметрии, то эти половинки совпадут.

    Примеры фигур, симметричных относительно прямой.

    Оси трапеции и треугольника1) Прямоугольник.

    Прямоугольник имеет 2 оси симметрии: прямые, проходящие через точку пересечения диагоналей параллельно сторонам.

    Оси трапеции и треугольника

    Ромб имеет две оси симметрии:

    прямые, на которых лежат его диагонали.

    3) Квадрат, как ромб и прямоугольник, имеет четыре оси симметрии: прямые, содержащие его диагонали, и прямые, проходящие через точку пересечения диагоналей параллельно сторонам.

    Оси трапеции и треугольника

    Окружность имеет бесконечное множество осей симметрии:

    любая прямая, содержащая диаметр, является осью симметрии окружности.

    Прямая также имеет бесконечное множество осей симметрии: любая перпендикулярная ей прямая является для данной прямой осью симметрии.

    Оси трапеции и треугольника

    Равнобедренная трапеция — фигура, симметричная относительно прямой,перпендикулярной основаниям и проходящей через их середины.

    Оси трапеции и треугольника

    Равнобедренный треугольник имеет одну ось симметрии:

    прямую, проходящую через высоту (медиану, биссектрису), проведённую к основанию.

    8) Равносторонний треугольник.

    Оси трапеции и треугольника

    Равносторонний треугольник имеет три оси симметрии:

    прямые, содержащие его высоты (медианы, биссектрисы).

    Оси трапеции и треугольника

    Угол — фигура, симметричная относительно прямой, содержащей его биссектрису.

    Осевая симметрия является движением.

    📹 Видео

    Математика без Ху!ни. Уравнение плоскости.Скачать

    Математика без Ху!ни. Уравнение плоскости.

    Геометрия 8 класс (Урок№16 - Средняя линия треугольников и трапеции.)Скачать

    Геометрия 8 класс (Урок№16 - Средняя линия треугольников и трапеции.)

    8 класс, 15 урок, Площадь трапецииСкачать

    8 класс, 15 урок, Площадь трапеции

    8 класс, 9 урок, Осевая и центральная симметрияСкачать

    8 класс, 9 урок, Осевая и центральная симметрия

    Геометрия 8. Урок 7 - Средняя линия треугольника и трапецииСкачать

    Геометрия 8. Урок 7 - Средняя линия треугольника и трапеции

    Математика это не ИсламСкачать

    Математика это не Ислам

    Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать

    Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.
  • Поделиться или сохранить к себе: