В статье мы расскажем, как находить значения:
и других тригонометрических выражений без тригонометрической таблицы .
- Как вычисляются синусы и косинусы углов?
- Чтобы вычислить косинус и синус некоторого угла нужно: 1. Отложить этот угол на тригонометрическом круге и определить какая точка соответствует этому углу; 2. Найти абсциссу и ординату этой точки. Косинус угла равен — абсциссе, а синус угла — ординате.
- В тригонометрии ось абсцисс (ось x) часто называют «ось косинусов», а ординат (ось y) – «ось синусов».
- Как отметить любой угол на тригонометрическом круге?
- Как находить синус и косинус любого угла?
- Примеры вычисления синуса и косинуса из ЕГЭ
- Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контр
- Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
- Описание презентации по отдельным слайдам:
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- Радианная мера угла. Поворот точки вокруг начала координат. методическая разработка по алгебре (10, 11 класс) на тему
- Скачать:
- Предварительный просмотр:
- По теме: методические разработки, презентации и конспекты
- 📺 Видео
Видео:Как искать точки на тригонометрической окружности.Скачать
Как вычисляются синусы и косинусы углов?
Чтобы вычислить косинус и синус некоторого угла нужно:
1. Отложить этот угол на тригонометрическом круге и определить какая точка соответствует этому углу;
2. Найти абсциссу и ординату этой точки. Косинус угла равен — абсциссе, а синус угла — ординате.
Предположим, стоит задача найти косинус и синус угла (30^°). Отложим на круге угол в (30^°) и найдем какая точка соответствует этому углу.
Если построить все точно, то видно, что абсцисса точки равна (0,866)… , что равно числу (frac<sqrt>) , а ордината равна (0,5), то есть (frac).
Аналогично и для любой другой точки на круге: значение абсциссы равно косинусу угла, а ординаты – синусу угла. Поэтому:
В тригонометрии ось абсцисс (ось x) часто называют «ось косинусов», а ординат (ось y) – «ось синусов».
Обычно на осях не отмечают (0,1); (0,2); (0,3) и т.д., а сразу наносят стандартные значения для синуса и косинуса: (±frac=±0,5); (±frac<sqrt> ≈±0,707); (±frac<sqrt> ≈±0,866).
Первый шаг к тому, чтобы находить синусы и косинусы стандартных углов – научится отмечать эти углы на тригонометрическом круге.
Видео:10 класс, 11 урок, Числовая окружностьСкачать
Как отметить любой угол на тригонометрическом круге?
Чтоб отложить положительный угол нужно двигаться против часовой стрелки от начала отсчета, чтобы отметить отрицательный – по часовой стрелке;
Градусная мера окружности равна (360^°), полуокружности (180^°), а четверти (90^°);
Углы в (0^°), (30^°), (45^°) и (60^°) выглядят так:
- Одна точка может соответствовать разным углам;
- Угол может быть больше (360^°). В этом случае он просто сделает полный оборот и пойдет дальше. Фактически, можно (360^°) просто отбросить и откладывать тот угол, который останется – в итоге вы всё равно окажетесь в той же точке.
Задание 1 . Отметьте на окружности точки соответствующие углам: (720^°), (225^°), (300^°), (870^°), (900^°), (-330^°), (-630^°), (-210^°).
Видео:Найти координаты точки единичной окружности полученной при повороте точки Ро(1;0) на угол π, 450°...Скачать
Как находить синус и косинус любого угла?
- Начертите тригонометрический круг и оси косинусов и синусов (не обязательно рисовать прям аккуратно, как на картинке ниже, можно и некрасиво – главное не запутаться какая точка к какому значению относится).
- Отложите на круге угол, синус и косинус которого надо найти, и определите точку на круге, соответствующую этому углу.
- Найдите координаты точки, используя картинку ниже.
(-540^°) на тригонометрическом круге совпадает с (-1) на оси косинусов. То есть, координаты этой точки: ((-1;0)). Значит, (cos(-540^°)=-1), а (sin(-540^° )=0).
Да, имея перед глазами тригонометрический круг, вычислять синусы и косинусы любых углов легко. Возможно, у вас возник вопрос: «а что делать, если круга нет? Как делать такие вычисления на ЕГЭ?». Ответ очевиден – нарисовать круг самому! Для этого надо понять, как располагаются значения на нем. Подробную методику того, как это делается я рассказывала в этой статье .
Есть и другой способ запомнить тригонометрический круг – внимательно посмотреть на картинку ниже и запомнить максимальное количество элементов. После прикройте страницу и по памяти нарисуйте круг и отметьте всё, что смогли запомнить. Сверьте, что у вас получилось с тем, что было на картинке. Повторяйте эту последовательность действий пока по памяти не получится нарисовать тригонометрический круг со всеми значениями. Это займет 15 минут вашего времени, но сильно поможет в 13 задаче ЕГЭ (и не только в ней).
Видео:Алгебра 10 класс Поворот точки вокруг начала координат ЛекцияСкачать
Примеры вычисления синуса и косинуса из ЕГЭ
В двух следующих примерах я специально рисовала круг от руки, чтобы вы увидели, как выглядят реальные решения.
Пример . Найдите значение выражения (54sqrtcos(510^°)).
Решение. (510^°=360^°+150^°=360^°+180^°-30^°.)
Видео:Точки, полученные поворотом точки Р (1; 0) вокруг начала координат на заданные углыСкачать
Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контр
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Видео:Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точекСкачать
Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
Сертификат и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Тригонометрические Функции Поворот точки вокруг начала координат
Проверка домашнего задания 1. Какая фигура называется углом ? 2. В чем измеряются углы? 3. Какие углы бывают, примеры их величин? 4. Какой угол принимают за угол в 10 ? 5. Что такое угол в один радиан? 6. Каково соотношение между радианом и градусом? 7. Сколько радиан составляют 1800?
Проверочная работа 1800 = π
Ответы на проверочную работу Оценка за проверочную работу: 7-8 верных ответов — оценка «3» 9-10 верных ответов – оценка «4» 11-12 верных ответов – оценка «5»
Единичная окружность Окружность с центром в начале координат и радиусом равным 1 — называется единичной окружностью. О Р 1 1 -1 -1 точка Р — начало отсчета углов М α + α — α I четверть II четверть III четверть IV четверть -α
Единичная окружность Окружность с центром в начале координат и радиусом равным 1 — называется единичной окружностью. О Р точка Р — начало отсчета углов + α — α I четверть II четверть III четверть IV четверть α = 00 α = 900 α = 1800 α = 2700 α = 3600
Единичная окружность Окружность с центром в начале координат и радиусом равным 1 — называется единичной окружностью. О Р точка Р — начало отсчета углов — α I четверть II четверть III четверть IV четверть α = 00 α = -900 α = -1800 α = -2700 α = 3600
Единичная окружность точка Р — начало отсчета углов Задание устно: Определить четверть ,в которой лежит угол 125 0 -45 0 — 300 0 -250 0 -150 0 2100 3300 3900 4600 -1200 Р π 12 3π 4 7π 4 7π 8
Координаты точки на единичной окружности О Р (1;0) I четверть II четверть III четверть IV четверть 00 900 = 1800 = 2700 = 3600= А (0;1) В (-1;0) С (0;-1) Точке А (0,1) соответствую углы: 900 900+3600 900+3600 +3600 +… 900-3600 900-3600 -3600 -… Или в радианах:
Координаты точки на единичной окружности О Р (1;0) 00 900 = 1800 = 2700 = 3600= А (0;1) В (-1;0) С (0;-1) 1. Каждому углу соответствует единственная точка на окружности 2. Одной и той же точке на окружности соответствует бесконечное множество углов где к – целое число М
Самостоятельная работа Найти координаты точки окружности, соответствующей углу: Записать все углы в радианах, соответствующие точке на окружности с координатами: 6. (0;-1) 7. (1;0) Найти координаты точки окружности, соответствующей углу: Записать все углы, соответствующие точке на окружности с координатами: 6. (-1;0) 7. (0;1) Вариант 2 Вариант 1
Ответы на проверочную работу Сегодня на уроке я узнал….. Сегодня на уроке я познакомился……. Сегодня на уроке я повторил……. Сегодня на уроке я научился……… Д/З: §22 стр.123 № 420
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 945 человек из 79 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 678 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 305 человек из 68 регионов
Ищем педагогов в команду «Инфоурок»
Видео:Как найти координаты точек на тригонометрической окружностиСкачать
Дистанционные курсы для педагогов
Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов
Сертификат и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 513 008 материалов в базе
Другие материалы
- 29.12.2015
- 725
- 1
- 29.12.2015
- 3543
- 0
- 29.12.2015
- 1087
- 11
- 29.12.2015
- 708
- 0
- 29.12.2015
- 537
- 0
- 29.12.2015
- 2139
- 0
- 29.12.2015
- 949
- 0
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 29.12.2015 2222
- PPTX 396.5 кбайт
- 4 скачивания
- Оцените материал:
Настоящий материал опубликован пользователем Балкарова Наталья Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 6 лет и 1 месяц
- Подписчики: 0
- Всего просмотров: 33304
- Всего материалов: 24
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Школы Сургута переведут на дистанционное обучение с 24 января
Время чтения: 1 минута
В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей
Время чтения: 1 минута
Учителя и воспитатели детсадов Подмосковья будут получать дополнительно 5 тыс. рублей
Время чтения: 1 минута
В России утвердили новые правила аккредитации образовательных учреждений
Время чтения: 1 минута
В Петербурге открыли памятник работавшим во время блокады учителям
Время чтения: 1 минута
В Рособрнадзоре видят предпосылки к снижению качества знаний у школьников на фоне пандемии
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:Радианная мера угла. 9 класс.Скачать
Радианная мера угла. Поворот точки вокруг начала координат.
методическая разработка по алгебре (10, 11 класс) на тему
Карточки для проведения самостоятельной работы. Можно использовать на уроках для закрепления темы.
Видео:Решение задач по теме "Поворот точки вокруг начала координат"Скачать
Скачать:
Вложение | Размер |
---|---|
sr_radiannaya_mera_ugla._povorot_tochki_vokrug_nachala_kordinat.docx | 61.64 КБ |
Видео:10 класс, 12 урок, Числовая окружность на координатной плоскостиСкачать
Предварительный просмотр:
Перевести в радианную меру углы:
Перевести в градусную меру углы:
Найти координаты точки окружности, соответствующей углу:
Записать все углы в радианах, соответствующие точке на окружности с координатами:
Записать все углы, на которые нужно повернуть точку P (1; 0) , чтобы получить точку с координатами:
- :
- :
- :
- :
- :
- :
Перевести в радианную меру углы:
Перевести в градусную меру углы:
Найти координаты точки окружности, соответствующей углу:
Записать все углы в радианах, соответствующие точке на окружности с координатами:
Записать все углы, на которые нужно повернуть точку P (1; 0) , чтобы получить точку с координатами:
Видео:9 класс, 11 урок, Формулы для вычисления координат точкиСкачать
По теме: методические разработки, презентации и конспекты
Урок «Поворот точки вокруг начала координат»
Второй урок темы «Тригонометрические функции» на 1-ом курсе в ОУ НПО. Тип урока: освоение нового материала. Понятия: угол, единичная окружность, координаты точки на окружности, поворот точки вокруг на.
Презентация «Начала тригонометрии. Радианная мера угла»
Презентация предназначена для проведения первого урока по тригонометрии.
Контрольная работа по геометрии 9 класс «Радианная мера угла»
в контрольной работе представлено 4 различных варианта.
«Угол поворота. Радианная мера угла»
Презентация по математике для 10 класчса по теме «Угол поворота, Радианная и градусная мера» .
Презентация к уроку «Радианная мера угла»
Презентация к уроку изучения нового материала в 10 классе по учебнику Ш.А.Алимова. Выполнена в программе SMART Notebook.
📺 Видео
№401. Найдите координаты проекций точек А(2; —3; 5), В (3; —5; ½) и C( — √3; —√2/2; √5-√3) наСкачать
стр 14 #1.4 Алгебра 10 класс. Ответы с объяснением. Как отмечать точки на единичной окружностиСкачать
Метод координат для ЕГЭ с нуля за 30 минут.Скачать
Тригонометрическая окружность. Как выучить?Скачать
Формулы приведения - как их легко выучить!Скачать
9 класс. Геометрия. Тригонометрические функции угла от 0° до 180°. Единичная окружность. Урок #1Скачать
Числовая окружность 10 класс АлимовСкачать
Алгебра 10 класс (Урок№29 - Радианная мера угла.)Скачать