Найдите диаметр окружности описанной около прямоугольного треугольника

Содержание
  1. Радиус описанной окружности около прямоугольного треугольника онлайн
  2. 1. Радиус окружности описанной около прямоугольного треугольника, если известна гипотенуза треугольника
  3. 2. Радиус окружности описанной около прямоугольного треугольника, если известны катеты треугольника
  4. 3. Радиус окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника
  5. 4. Радиус окружности описанной около прямоугольного треугольника, если известны катет и прилежащий острый угол треугольника
  6. Окружность, описанная около треугольника. Треугольник, вписанный в окружность. Теорема синусов
  7. Серединный перпендикуляр к отрезку
  8. Окружность, описанная около треугольника
  9. Свойства описанной около треугольника окружности. Теорема синусов
  10. Доказательства теорем о свойствах описанной около треугольника окружности
  11. Найдите диаметр окружности описанной около прямоугольного треугольника
  12. §1. Прямоугольный треугольник. Метрические соотношения.
  13. 🌟 Видео

Видео:Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу.Скачать

Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу.

Радиус описанной окружности около прямоугольного треугольника онлайн

С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника, в том числе радиус описанной окружности около прямоугольного треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор

Видео:Геометрия Найдите диаметр окружности, описанной около прямоугольного треугольника, если один из егоСкачать

Геометрия Найдите диаметр окружности, описанной около прямоугольного треугольника, если один из его

1. Радиус окружности описанной около прямоугольного треугольника, если известна гипотенуза треугольника

Пусть известна гипотенуза c прямоугольного треугольника (Рис.1). Найдем радиус описанной окружности около треугольника.

Найдите диаметр окружности описанной около прямоугольного треугольника

На странице Радиус окружности описанной около треугольника формула радиуса описанной окружности около треугольника по стороне и противолежащему углу имеет вид:

( small R=frac )

где C − угол противолежащий гипотенузе прямоугольного треугольника. Поскольку угол, противолежащий гипотенузе − прямой, то получим:

( small R=frac=frac, )
( small R=frac. )(1)

Пример 1. Известна гипотенуза ( small с=frac ) прямоугольного треугольника. Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (1).

Подставим значение ( small c=frac ) в (1):

Найдите диаметр окружности описанной около прямоугольного треугольника

Ответ: Найдите диаметр окружности описанной около прямоугольного треугольника

Видео:Как найти диаметр окружности, описанной около равнобедренного треугольникаСкачать

Как найти диаметр окружности, описанной около равнобедренного треугольника

2. Радиус окружности описанной около прямоугольного треугольника, если известны катеты треугольника

Пусть известны катеты a и b прямоугольного треугольника. Найдем радиус описанной окружности около треугольника (Рис.2).

Найдите диаметр окружности описанной около прямоугольного треугольника

Из теоремы Пифагора запишем формулу гипотенузы, выраженная через катеты:

( small c=sqrt. )(2)

Подставляя (2) в (1), получим:

( small R=frac=frac<large sqrt>, )
( small R=frac<large sqrt>. )(3)

Пример 2. Катеты прямоугольного треугольника равны: ( small a=15 , ; b=3.) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (3). Подставим значения ( small a=15 , ; b=3) в (3):

Найдите диаметр окружности описанной около прямоугольного треугольника

Ответ: Найдите диаметр окружности описанной около прямоугольного треугольника

Видео:№694. Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенузаСкачать

№694. Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенуза

3. Радиус окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника

Найдите диаметр окружности описанной около прямоугольного треугольника

Формула для вычисления радиуса окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника аналогична формуле вычисления радиуса описанной окружности около произвольного треугольника (см. статью на странице Радиус описанной окружности около треугольника онлайн):

Найдите диаметр окружности описанной около прямоугольного треугольника(4)

Видео:Окружность, описанная около прямоугольного треугольника | Геометрия 8-9 классыСкачать

Окружность, описанная около прямоугольного треугольника | Геометрия 8-9 классы

4. Радиус окружности описанной около прямоугольного треугольника, если известны катет и прилежащий острый угол треугольника

Пусть известны катет a и прилежащий острый угол B прямоугольного треугольника (Рис.4). Найдем радиус описанной окружности около треугольника.

Найдите диаметр окружности описанной около прямоугольного треугольника

Так как треугольник прямоугольный, то сумма острых углов треугольника равна 90°:

( small angle A+angle B=90°. )
( small angle A=90°-angle B. )(5)

Подставляя (5) в (4), получим:

( small R=frac=frac) ( small =frac )
( small R=frac. )(6)

Пример 3. Катет прямоугольного треугольника равен: ( small a=15 ,) а прилежащий угол равен ( small angle B=25°. ) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (6). Подставим значения ( small a=15 , ; angle B=25° ) в (6):

Найдите диаметр окружности описанной около прямоугольного треугольника

Ответ: Найдите диаметр окружности описанной около прямоугольного треугольника

Видео:ЗАДАНИЕ 1| ЕГЭ ПРОФИЛЬ| Радиус окружности, описанной около прямоугольного треугольника, равен 4. НайСкачать

ЗАДАНИЕ 1| ЕГЭ ПРОФИЛЬ| Радиус окружности, описанной около прямоугольного треугольника, равен 4. Най

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Найдите диаметр окружности описанной около прямоугольного треугольникаСерединный перпендикуляр к отрезку
Найдите диаметр окружности описанной около прямоугольного треугольникаОкружность описанная около треугольника
Найдите диаметр окружности описанной около прямоугольного треугольникаСвойства описанной около треугольника окружности. Теорема синусов
Найдите диаметр окружности описанной около прямоугольного треугольникаДоказательства теорем о свойствах описанной около треугольника окружности

Найдите диаметр окружности описанной около прямоугольного треугольника

Видео:Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать

Задача 6 №27900 ЕГЭ по математике. Урок 128

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Найдите диаметр окружности описанной около прямоугольного треугольника

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Найдите диаметр окружности описанной около прямоугольного треугольника

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Найдите диаметр окружности описанной около прямоугольного треугольника

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Найдите диаметр окружности описанной около прямоугольного треугольника

Найдите диаметр окружности описанной около прямоугольного треугольника

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Найдите диаметр окружности описанной около прямоугольного треугольника

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Найдите диаметр окружности описанной около прямоугольного треугольника

Найдите диаметр окружности описанной около прямоугольного треугольника

Полученное противоречие и завершает доказательство теоремы 2

Видео:№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиусСкачать

№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиус

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Найдите диаметр окружности описанной около прямоугольного треугольника

Видео:Геометрия. ОГЭ по математике. Задание 16Скачать

Геометрия. ОГЭ по математике. Задание 16

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Найдите диаметр окружности описанной около прямоугольного треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Найдите диаметр окружности описанной около прямоугольного треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Найдите диаметр окружности описанной около прямоугольного треугольникаВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаНайдите диаметр окружности описанной около прямоугольного треугольникаОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиНайдите диаметр окружности описанной около прямоугольного треугольникаЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиНайдите диаметр окружности описанной около прямоугольного треугольникаЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовНайдите диаметр окружности описанной около прямоугольного треугольника
Площадь треугольникаНайдите диаметр окружности описанной около прямоугольного треугольника
Радиус описанной окружностиНайдите диаметр окружности описанной около прямоугольного треугольника
Серединные перпендикуляры к сторонам треугольника
Найдите диаметр окружности описанной около прямоугольного треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаНайдите диаметр окружности описанной около прямоугольного треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиНайдите диаметр окружности описанной около прямоугольного треугольника

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиНайдите диаметр окружности описанной около прямоугольного треугольника

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиНайдите диаметр окружности описанной около прямоугольного треугольника

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовНайдите диаметр окружности описанной около прямоугольного треугольника

Для любого треугольника справедливы равенства (теорема синусов):

Найдите диаметр окружности описанной около прямоугольного треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаНайдите диаметр окружности описанной около прямоугольного треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиНайдите диаметр окружности описанной около прямоугольного треугольника

Для любого треугольника справедливо равенство:

Найдите диаметр окружности описанной около прямоугольного треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Нахождение диаметра описанной окружностиСкачать

Нахождение диаметра описанной окружности

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Найдите диаметр окружности описанной около прямоугольного треугольника

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Найдите диаметр окружности описанной около прямоугольного треугольника

Найдите диаметр окружности описанной около прямоугольного треугольника.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Найдите диаметр окружности описанной около прямоугольного треугольника

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:ТЕОРИЯ: ОКРУЖНОСТЬ ОПИСАННАЯ ОКОЛО ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА (Кратко)Скачать

ТЕОРИЯ: ОКРУЖНОСТЬ ОПИСАННАЯ ОКОЛО ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА (Кратко)

Найдите диаметр окружности описанной около прямоугольного треугольника

  • Найдите диаметр окружности описанной около прямоугольного треугольника

Основные метрические сооьтношения в прямоугольном треугольнике

Найдите диаметр окружности описанной около прямоугольного треугольника

§1. Прямоугольный треугольник. Метрические соотношения.

Основные метрические сооьтношения в прямоугольном треугольнике

Пусть `ABC` прямоугольный треугольник с прямым углом `C` и острым углом при вершине `A`, равным `alpha` (рис. 1).

Найдите диаметр окружности описанной около прямоугольного треугольника

Используем обычные обозначения:

`c` — гипотенуза `AB`;

`a` и `b` – катеты `BC` и `AC` (по-гречески «kathetos — катет» означает отвес, поэтому такое изображение прямоугольного треугольника нам представляется естественным);

`a_c` и `b_c` – проекции `BD` и `AD` катетов на гипотенузу;

`h` – высота `CD`, опущенная на гипотенузу;

`m_c` – медиана `CM`, проведённая к гипотенузе;

`R` – радиус описанной окружности;

`r` – радиус вписанной окружности.

Напомним, что если `alpha` — величина острого угла `A` прямоугольного треугольника `ABC` (см. рис. 1), то

`sin alpha = a/c`, `cos alpha = b/c` и `»tg»alpha = a/b`.

Значения синуса, косинуса и тангенса острого угла прямоугольного треугольника зависят только от меры угла и не зависят от размеров и расположения треугольника.

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

`c^2 = a^2 + b^2`

Доказательство теоремы повторите по учебнику.

Выведем ряд соотношений между элементами прямоугольного треугольника.

Квадрат катета равен произведению гипотенузы и его проекции на гипотенузу

Если `/_ A = alpha` (см. рис. 1), то `/_ CBD = 90^@ — alpha` и `/_ BCD = alpha`. Из треугольника `ABC` `sin alpha = (BC)/(AB)`, а из треугольника `BCD` `sin alpha = (BD)/(BC)`.

Значит, `(BC)/(AB) = (BD)/(BC)`, откуда `BC^2 = AB * BD`, т. е. `a^2 = c * a_c` . Аналогично доказывается второе равенство.

Квадрат высоты, опущенной на гипотенузу, равен произведению проекции катетов на гипотенузу

Из треугольника `ACD` (рис. 1) имеем `»tg»alpha = (CD)/(AD)`, а из треугольника `BCD` `»tg»alpha = (BD)/(CD)`.

Значит `(BD)/(CD) = (CD)/(AD)`, откуда `CD^2 = AD * BD`, т. е. `h^2 = a_c * b_c`.

Произведение катетов равно произведению гипотенузы и высоты, опущенной на гипотенузу

Из треугольника `ABC` имеем `sin alpha = (BC)/(AB)`, а из треуольника `ACD` `sin alpha = (CD)/(AC)`.

Таким образом, `(BC)/(AB) = (CD)/(AC)`, откуда `BC * AC = AB * CD`, т. е. `a * b = c * h`.

Медиана, проведённая к гипотенузе, равна половине гипотенузы, т. е.

Пусть `AM = BM`. Проведём $$ MKVert BC$$ (рис. 2), тогда по теореме Фалеса `AK = CK`

Найдите диаметр окружности описанной около прямоугольного треугольника.

Кроме того, из того, что `BC _|_ AC` и $$ MKVert BC$$ следует `MK _|_ AC`. В прямоугольных треугольниках `CMK` и `AMK` катет `MK` общий, катеты `CK` и `AK` равны. Эти треугольники равны и `CM = AM`, т. е. `CM = 1/2 AB`.

Полезно также запомнить, что медиана к гипотенузе разбивает треугольник на два равнобедренных треугольника.

Радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы

Это следует из Свойства 4, действительно, `MA = MB = MC`, следовательно, окружность с центром в точке `M` и радиуса `c/2` проходит через три вершины.

Сумма катетов равна удвоенной сумме радиусов описанной и вписанной окружностей

`a + b = 2(R + r)` или `a + b = c + 2r`

Пусть `O` — центр вписанной окружности и `F`, `N` и `S` — точки касания сторон треугольника `ABC` (рис. 3), тогда `OF_|_ BC`, `ON _|_ AC`, `OS _|_ AB` и `OF = ON = OS = r`. Далее, `OFCN` — квадрат со стороной `r`, поэтому `BF = BC — FC`, `AN = AC — CN`, т. е. `BF = a — r` и `AN = b — r`.

Найдите диаметр окружности описанной около прямоугольного треугольника

Прямоугольные треугольники `AON` и `AOS` равны (гипотенуза `AO` — общая, катеты `ON` и `OS` равны), следовательно, `AS = AN`, т. е. `AS = b — r`.

Аналогично доказывается, что `BS = a — r`, поэтому из `AB = AS + BS` следует `c = (b — r) + (a — r)`, т. е. `a + b = c + 2r`. Зная, что `c = 2R`, окончательно получаем `a + b = 2(R + r)`.

Равенства, доказанные в Свойствах 1 и 2, записываются также как:

🌟 Видео

Радиус окружности, описанной около прямоугольного треугольника. ЗадачаСкачать

Радиус окружности, описанной около прямоугольного треугольника. Задача

№704. Окружность с центром О описана около прямоугольного треугольника, а) ДокажитеСкачать

№704. Окружность с центром О описана около прямоугольного треугольника, а) Докажите

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математике

41 Задача о радиусе, окружности описанной около прямоугольного треугольникаСкачать

41 Задача о радиусе, окружности описанной около прямоугольного треугольника

ОГЭ Задание 16 Описанная окружность ДиаметрСкачать

ОГЭ Задание 16 Описанная окружность Диаметр

ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

№795. Найдите диаметр окружности, если его концы удалены от некоторой касательной на 18 см и 12 см.Скачать

№795. Найдите диаметр окружности, если его концы удалены от некоторой касательной на 18 см и 12 см.

Геометрия Найти радиус окружности, описанной около прямоугольного треугольника, если радиусСкачать

Геометрия Найти радиус окружности, описанной около прямоугольного треугольника, если радиус

Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать

Задание 16 ОГЭ по математике. Две окружности одна  описана около квадрата, другая вписана в него.
Поделиться или сохранить к себе: