1) активная нагрузка — это резисторы. Примером могут служить утюги, лампы накаливания, электрочайники;
2)индуктивная нагрузка — содержащая катушки. Это, например, электродвигатели;
3)реактивная нагрузка — включающая конденсаторы;
4) комплексная нагрузка — включающая в себя содержание всех выше рассмотренных в любых сочетаниях. Это телевизоры, компьютеры, сберегающие лампы. Все, что угодно.
Рассмотрим простейший случай, например, утюг.
Любое активное сопротивление не вносит изменений в форму тока, а значит, изменяется он в такт, если можно так сказать, напряжению. Единственно что надо учесть — это тот факт, что величина тока будет меньше величины напряжения в R раз согласно закона Ома,где R — сопротивление утюга. Примем его сопротивление, к примеру 50Ом. Изменение тока будет выглядеть согласно рис.2а. Несложно зрительно заметить, что ток и напряжение будут иметь нулевые, максимальные, средние значения в одно и тоже время (для этого увеличьте нажатием рис.1 и рис.2а и сравните красные графики для напряжения на рис.1 и для тока на рис.2а), т.е. все меняется синхронно.
А теперь рассмотрим вопрос о смещении нейтрали . Возьмем любую многоэтажку и ее лестничную клетку, содержащую три квартиры. Вполне логично предположить, что каждую квартиру запитают от отдельной фазы. Обозначив нагрузку каждой из квартир как R1, R2, R3 представим упрощенную монтажную и электрическую схемы питания. Это показано в верхней части рис.3.
ВАЖНО! В нейтральном проводе 4-х проводной осветительной магистрали запрещена установка предохранителей или выключателей, т.к. при отключении нейтрального провода фазные напряжения могут стать неровными. В результате в одних фазах(или одной фазе)может наблюдаться недокал, а в других фазах(или одной фазе) — перекал и быстрое перегорание ламп(или бытовой техники) . Это и будет явлением смещения нейтрали . Рассмотрим это явление. Посмотрим на верхнюю часть рис.3. При нормальной работе каждая квартира получает питание от фазы и нуля, а токи со всех трех фаз складываются (по правилу сложения векторов) в общей точке и текут далее по нулевому проводнику. Если мысленно порвать нулевой провод (отсоединить провод N в верхней части рис.3), то квартиры не обесточатся — схема окажется включенной звездой, как двигатель. Однако, у двигателя все три обмотки имеют равные параметры, поэтому в общей точке — нулевой потенциал, как мы рассматривали на рис.1. Но с квартирами такой номер не пройдет. В одной горят лампы и включен холодильник, в другой — домашний кинотеатр и пылесос с заряжающимся телефоном, в третьей, к примеру, — фен и СВЧ-печь. То есть нагрузки-то везде разные. И в общей точке возникнет некоторый потенциал. Его величина определяется специальной формулой, приведенной ниже, где U с индексами — фазные напряжения источника питания(генератора), а Y с индексами — проводимости нагрузок фаз(понятие проводимости в разделе «Про сопротивление». Пример такого рассчета можно найти в разделе . Правда, для этого необходимо быть знакомым с комплексными числами. А здесь мы «на пальцах», т.е. графически, покажем, что произойдет. Посмотрим на рис.4. Для удобства обозначим фазы как А, В и С — по старинке.
Линейные напряжения (т.е. напряжения между каждыми из двух фаз попарно) АВ, ВС и АС образуют равносторонний треугольник, где каждая сторона равна 380В. Фазные напряжения (т.е. напряжения между нулем N и любой из трех фаз А,В и С) равны по 220В. При смещении нейтрали точка N может переместиться в любое место треугольника (это как если зацепиться за нее и переместить в произвольное место). Фактически это место зависит, как мы оговаривали, от того, какие потребители, где и в каком количестве включены. Может возникнуть такая ситуация, когда при смещении нейтрали одно из фазных напряжений будет сильно завышено — тогда могут сгореть некоторые включеные приборы. Соответственно, общая нагрузка изменится и это приведет к смещению нейтрали в другую точку и возрастания фазного напряжения в другой квартире. При выходе из строя некоторых потребителей там — снова произойдет ее перерасчет и перемещение. И так до тех пор, пока вся оставшаяся нагрузка не сможет держать то напряжение, которое в итоге всего этого на нее будет подано.
в схеме треугольник:
1)линейные токи генератора I A , I B , I C не равны фазным токам нагрузки I AB , I BC , I AC . А вот линейные напряжения генератора будут равны фазным напряжениям нагрузки. И для генератора и для нагрузки это будут напряжения U AB , U BC , U AC .
- Построение векторной диаграммы
- Напряжение смещения нейтрали в трехфазных цепях
- Напряжение смещения нейтрали определяется по следующей формуле:
- Случай 1 — нагрузка однородная равномерная по трем фазам
- Случай 2 — нагрузка однородная и неравномерная по трем фазам
- Случай 3 — нагрузка по трем фазам разнородная
- Трехфазные несимметричные цепи
- Расчет несимметричной трехфазной цепи при соединении источника и приемника звездой
- Определение токов
- Смещение нейтрали
- Роль нулевого провода
- Определение мощности
- Расчет несимметричной трехфазной цепи при соединении треугольником
- Соединение источника и приемника треугольником
- Преобразование звезды и треугольника сопротивлений в трехфазных цепях
- Симметричные составляющие несимметричной трехфазной системы
- Комплексы симметричных составляющих
- Разложение несимметричной системы на симметричные составляющие
- Свойства трехфазных цепей
- Несимметричный режим работы трехфазной цепи
- Мощность несимметричной трехфазной цепи
- 🌟 Видео
Видео:Что такое перекос фаз и неравномерное распределение нагрузкиСкачать
Построение векторной диаграммы
Этот пункт данной главы предназначен тем, кто уже ознакомился с разделом «Решение задач», а точнее с задачей №8. Здесь для особо любопытных покажем, как по графику складывать токи(действительные значения)в фазах и считать суммарный ток в нейтральном проводе(его действительную величину). А также расскажем о построении векторной диаграммы токов и напряжений, как это было обещано в задаче №8.
Глядя на рис.6, можно ток в нейтрали и сразу найти, так так он показан коричневой линией. Например, для t = 0,01с он равен 1,47А, а при t = 0,016с составит 5,2А. Однако, надо уметь проверять и вручную.
Поэтому возьмем для примера два разных промежутка времени t = 0,01с и t = 0,016с и найдем для каждого из них значение тока в нейтральном проводе. Имеем при t = 0,01с следующие токи в фазах(см. на график): I A = 1.96A; I B = 0.49A; I C = -0.98A. Складываем токи всех фаз и получаем ток в нейтрали: I N = 1.96+0.48-0.98=1.47A.
Для t = 0,016с имеем: I A = -2,45A; I B = 5,2A; I C = 2,45A. Складываем токи всех фаз и получаем ток в нейтрали: I N = -2,45+5,2+2,45=5,2A.
Теперь о векторной диаграмме. Берем произвольную точку N. Рисуем вертикальную ось действительных значений и горизонтальную ось мнимых значений, обозначенную как j. Откладываем по вертикальной оси в выбранном масштабе значение фазного напряжения фазы А. Если масштаб 1Вольт/мм, значит длиною 127мм. Далее с разносом в 120градусов в обе стороны откладываем два других фазных напряжения той же длины. Соединяем все вершины и получаем треугольник, идентичный на рис.4. Его стороны будут являться междуфазными, т.е. линейными напряжениями. Токи в каждой из фаз также строятся с учетом масштаба. Угол между напряжением и током откладывается согласно полученного значения. Например, мы получили
Откладываем по транспортиру угол величиною в -53градуса вправо от отрезка U фА . А величина I фА при масштабе 1А/см будет 2,5см. Для фазы В мы получили
Здесь, чтобы правильно отложить угол между напряжением и током, надо учесть, что напряжение U фВ уже имеет угол -120градусов. Поэтому откладываем от отрезка U фВ недостающие 53градуса(173-120)вправо и обозначаем на диаграмме как угол фВ. Для фазы С мы получили
Здесь, чтобы правильно отложить угол между напряжением и током, надо учесть, что напряжение U фС уже имеет угол 120градусов. Поэтому откладываем от отрезка U фС недостающие 36градусов(156-120)влево и обозначаем на диаграмме как угол фС. В заключение необходимо правильно построить ток нейтрали. Для этого необходимо сложить все токи по правилу сложения векторов. Для этого переносим параллельно вправо длину отрезка, изображающего ток I фВ (он красный) и «присоединяем» его к концу отрезка, изображающего ток I фА . Затем также переносим вниз отрезок тока I фС (тоже сделаем его красным)и «присоединяем» его к концу красного отрезка, изображающего ток I фВ . Соединяем точку N и конец последнего отрезка. Полученный синий отрезок будет током нейтрали, а его длина будет равна действительному значению тока нейтрали с учетом выбранного масштаба. Все, как говорится, просто и элементарно.
Видео:Трехфазные цепи. Схема соединения "ЗВЕЗДА"Скачать
Напряжение смещения нейтрали в трехфазных цепях
Как уже писалось (например, здесь) нейтралью называют общую точку обмоток электрических машин при соединении в схему звезда, при соединении в схему треугольник для получения нейтральной точки можно использовать схему “скользящий треугольник”.
Синонимом понятия “смещение нейтрали” является выражение “перекос фаз”. Оба эти словосочетания используются в лексиконе и профессиональной среде электриков.
В данной статье будем рассматривать смещение нейтрали у нагрузки. Для начала выведем формулу для расчета напряжения смещения нейтрали, для этого нарисуем схему замещения трехфазной сети, где в обычном режиме напряжения фаз представляют собой синусоиды, которые при равномерной нагрузке фаз сдвинуты на 1200 и в любой момент времени их сумма равна 0. В нашем же случае, нагрузка будет неравномерная, что приведет к смещению нейтрали, что можно увидеть по рисунку с векторными диаграммами.
Видео:Часть 1. Замыкание на землю в сети с изолированной нейтралью.Скачать
Напряжение смещения нейтрали определяется по следующей формуле:
- Еа, Ев, Ес — ЭДС источника питания
- Уа, Ув, Ус — проводимости фаз потребителя, напомним, что проводимость — величина обратная полному сопротивлению, то есть У=1/Z
- 00’ — эти точки соответствуют нулю нагрузки и нулю генератора (трансформатора), питающего данную нагрузку
Под смещением нейтрали понимают, что между нулевым проводом источника и нагрузки возникает напряжение, а по нулевому проводу течет ток. Но, это в случае, если нулевые провода соединены. Если же нулевой провод источника и нагрузки не соединен, то смещение нейтрали может вызвать нарушение магнитного равновесия в трансформаторе.
Случай 1 — нагрузка однородная равномерная по трем фазам
Идеальный случай (симметричная нагрузка), при котором смещения нейтрали не происходит, сумма напряжений в любой момент времени равна нулю, линейные трех фаз составляют
220В. Под однородностью нагрузки понимается, что она носит либо активный, либо индуктивный, либо емкостной характер по всем трем фазам, как сказали бы электроники — элемент “или”. В нашем примере верным будет утверждение, что Xa=Xb=Xc.
Случай 2 — нагрузка однородная и неравномерная по трем фазам
При данном стечении обстоятельств, происходит смещение нейтрали, которому соответствует отрезок 00’ на рисунке сверху слева, который и создает ток в нулевом проводе. Смещения в ту или иную сторону точки 0’ от точки 0 будет зависеть от характера нагрузки. В данном примере нагрузка однородная, но неравномерная, различающаяся по величине, но не по типу.
Случай 3 — нагрузка по трем фазам разнородная
В случае с разнородной неравномерной нагрузкой нейтральная точка нагрузки (0’) вышла за пределы треугольника. Значения же фазных напряжений на нагрузке превышают это значение на источнике питания в несколько раз. Однако, не следует забывать, что это смещение происходит только на нагрузке, а не на источнике питания.
Неоднородность нагрузки будет влиять на источник питания (трансформатор или генератор), только, если относительно источника эта нагрузка будет велика. В этом случае может произойти нарушение магнитной устойчивости трансформатора.
Следует помнить, чем выше нагрузка, тем большее влияние на систему она может оказывать, аналогично, как большие двигатели серьезнее просаживают напряжение на шинах при перерывах питания на электростанциях.
2020 Помегерим! — электрика и электроэнергетика
Видео:Этому не учат, а стоило бы. Чем отличается звезда от треугольника? #звезда #треугольник #двигательСкачать
Трехфазные несимметричные цепи
Содержание:
Трехфазные несимметричные цепи:
Трехфазная цепь несимметрична, если комплексы сопротивлений ее фаз неодинаковы.
Несимметричной может быть действующая в цепи система э. д. с. (не равны модули э. д. с. или фазовые сдвиги между каждой парой э. д. с.). .
Для расчета несимметричной цепи применяются различные методы в зависимости от ее схемы и вида несимметрии.
Видео:Треугольник линейных напряжений при ОЗЗ (опыт 1)Скачать
Расчет несимметричной трехфазной цепи при соединении источника и приемника звездой
На схеме (см. рис. 20.4) видно, что при соединении звездой трехфазная система представляет собой электрическую цепь с двумя узлами — нейтральными точками N и N’. Наиболее удобным методом расчета в данном случае является метод узлового напряжения.
Определение токов
Рассмотрим сначала общий случай расчета цепи с нулевым проводом, сопротивление которого ZN. При этом сделаем некоторые упрощения: сопротивления линейных проводов и фаз источников будем полагать равными нулю. Если указанные сопротивления нельзя считать равными нулю, их можно отнести к приемнику, прибавив к сопротивлениям последнего по правилам сложения комплексов.
При таком упрощении потенциалы линейных зажимов источника и приемника (например, точек А и А’) можно считать одинаковыми.
Напряжение между нулевыми точками N и N’, или узловое напряжение
Смещение нейтрали
На рис. 21.1 изображена топографическая диаграмма цепи рис. 20.4, а при несимметричной нагрузке.
При наличии сопротивления в нулевом проводе () нулевая точка приемника на топографической диаграмме не совпадает с нулевой точкой источника. Поэтому напряжение UN называют напряжением смещения нейтрали. Вследствие смещения нейтрали напряжения на фазах приемника оказываются неодинаковыми, несмотря на симметрию фазных напряжений источника (см. решение задачи 21.3).
Рис. 21.1. Топографическая диаграмма при несимметричной нагрузке (соединение звездой)
Из формулы (21.1) видно, что симметрия фазных напряжений на нагрузке, когда UN = 0, достигается в двух частных случаях.
1. При симметричной нагрузке, когда комплексы проводимостей фаз равны: . В этом случае в числителе проводимость можно вынести за скобку, внутри которой складывается три вектора э. д. с. источника, равных по величине и сдвинутых по фазе на 120°; эта сумма равна нулю (см. рис. 20.8, б) и UN = 0. Поэтому ток в нулевом проводе равен нулю [см. формулу (21.4)] и необходимость в этом проводе отпадает, а электроснабжение симметричных приемников осуществляется по трехпроводной системе.
2. В четырехпроводной системе, когда сопротивление нулевого провода равно нулю (YN = ∞.)
Роль нулевого провода
Нулевой провод является уравнительным. Потенциалы нейтрали источника и приемника с помощью этого провода принудительно уравнены, а поэтому звезда векторов фазных напряжений приемника точно совпадает со звездой фазных напряжений источника.
Четырехпроводная система применяется в электрических сетях с напряжением 380/220 В при электроснабжении от общего источника силовой (электродвигатели) и осветительной (электролампы) нагрузки.
При несимметричной нагрузке обрыв нулевого провода () вызывает значительное изменение токов и фазных напряжений, что в большинстве случаев недопустимо. Поэтому в нулевой провод предохранители не устанавливаются.
Определение мощности
При несимметричной нагрузке нужно определить мощность каждой фазы. Например, для фазы А:
Аналогично определяются мощности других фаз.
Активная мощность всей трехфазной цепи равна сумме мощностей фаз:
Реактивная мощность цепи равна алгебраической сумме реактивных мощностей фаз:
В этой сумме реактивная мощность катушки считается положительной, а реактивная мощность конденсатора — отрицательной.
Задача 21.1.
При соединении звездой с нулевым проводом определить фазные напряжения и токи в приемнике энергии, сопротивления которого заданы комплексами:
Действующая величина симметричной трехфазной системы э. д. с. 220 В. Сопротивление нулевого провода
Построить векторную диаграмму.
Сопротивлениями линейных проводов и внутренними сопротивлениями источника э. д. с. пренебречь.
Решение. Схема, соответствующая условию задачи, показана на рис. 21.2, а.
Проводимости ветвей между узловыми точками NN’:
Рис. 21.2. К задаче 21.1
Комплексы э. д. с. источника:
Узловое напряжение
Фазные напряжения приемника:
Токи в фазах и нулевом проводе:
Векторная диаграмма напряжений и токов показана на рис. 21.2, б.
Задача 21.3.
Электрические лампы включены звездой в трехфазную сеть с линейным напряжением 380 В. В каждую фазу включены по 50 ламп с номинальной мощностью 60 Вт каждая, номинальным напряжением 220 В. Как изменяются фазные напряжения и токи при изменении нагрузки одной фазы от холостого хода до короткого замыкания при обрыве нулевого провода?
В каждом выбранном случае нагрузки построить векторную диаграмму, определить мощность всей трехфазной цепи.
Решение. Условию задачи соответствует схема рис. 21.3, а, на которой группа ламп в каждой фазе условно показана двумя лампами.
Оставляя постоянным число ламп в фазах В и С, будем менять его в фазе А. Подсчеты по условию задачи выполним для таких нагрузок в фазе А: 50, 25, 100 ламп, короткое замыкание, холостой ход.
1. При включении в каждую фазу по 50 одинаковых ламп нагрузка симметрична. Поэтому фазные напряжения на нагрузке равны фазным напряжениям в сети:
Напряжение на лампах равно номинальному. В этом случае лампы работают с номинальной мощностью.
Это даёт право определить фазные токи по заданной мощности ламп:
При соединении звездой IФ = IЛ, поэтому Iл = 13,6 А. Общая мощность трехфазной цепи
Р = ЗРФ = 3 • 60 • 50 = 9000 Вт.
2. В фазе А включено 25 ламп.
При несимметричной нагрузке напряжения на лампах отличаются от фазных напряжений в сети. Поэтому определить токи по заданной мощности ламп нельзя, так как действительная мощность ламп и фазные напряжения их неизвестны. При решении задачи будем считать, что сопротивление ламп в накаленном состоянии нити практически не меняется при некотором изменении их мощности.
Сопротивление лампы в номинальном режиме
Сопротивление фаз В и С при включении 50 ламп
Сопротивление фазы А
Комплексы фазных напряжений в сети:
Проводимости ветвей:
Смещение нейтрали
Напряжения фаз:
Токи в фазах:
Мощность всех ламп в фазах:
Мощность одной лампы:
Общая мощность в трехфазной системе
Векторная диаграмма напряжений для различной нагрузки фазы А показана на рис. 21.3, д.
Положение нулевой точки на диаграмме соответствует такой нагрузке фазы А: 1 — симметричная нагрузка (во всех фазах по 50 ламп); 2 — в фазе А 25 ламп; 3 — фаза А разомкнута (холостой ход); 4 — в фазе А 100 ламп; 5 — в фазе А короткое замыкание.
Выполните расчет трехфазной цепи для случаев нагрузки 3, 4, 5 подобно приведенному расчету для случая нагрузки 2, проверьте соответствие результатов расчета векторной диаграмме рис. 21.3, д.
Как видно, нулевая точка нагрузки при изменении проводимости фазы А перемещается на прямой АD, которая является перпендикуляром, опущенным из точки А к вектору линейного напряжения UBC. При холостом ходе фазы А (обрыв линейного провода в этой фазе) нулевая точка перемещается в точку D и напряжения на двух других фазах UB и UC по величине оказываются равными половине линейного напряжения UBC (рис. 21.3, б).
Рис. 21.3. К задаче 21.3
То же следует из схемы рис. 21.3, в. В рассматриваемом случае сопротивления фаз В и С оказываются включенными последовательно на линейное напряжение UBC.
Сопротивления эти равны, поэтому линейное напряжение делится между двумя фазами поровну.
При коротком замыкании фазы А линейный провод этой фазы подводится непосредственно к нулевой точке нагрузки (рис. 21.3, г). Поэтому лампы, включенные в фазы В и С, оказываются под линейным напряжением.
Расчет несимметричной трехфазной цепи при соединении треугольником
Трехфазная цепь при соединении приемника треугольником и любой схеме соединения фаз источника имеет разветвленную многоконтурную схему (см., например, рис. 20.8, а; 21.5).
Расчет такой цепи выполняется одним из известных методов с учетом состава ее элементов и схемы соединения.
Соединение источника и приемника треугольником
Расчет сложной цепи (см. рис. 20.8, а) значительно упрощается, если не принимать во внимание сопротивление проводов. В этом случае напряжения на фазах приемника равны соответствующим напряжениям источника и, как правило, представляют собой симметричную систему.
Если трехфазная система напряжений, приложенных к приемнику, известна, то фазные токи
где — полные сопротивления фаз.
Линейные токи можно определить графически, как показано на рис. 21.4. Если задача решается в комплексной форме, линейные токи находят по формулам (20.7).
Мощность в несимметричной трехфазной цепи при соединении треугольником определяют по тем же формулам, что и при соединении звездой (21.6), (21.7).
Рис. 21.4. Векторная диаграмма токов при несимметричной нагрузке (соединение треугольником)
Рис. 21.5. К вопросу о преобразовании треугольника сопротивлений в эквивалентную звезду в трехфазной цепи
Преобразование звезды и треугольника сопротивлений в трехфазных цепях
Расчет трехфазных цепей при смешанном соединении (звездой и треугольником), с учетом сопротивлений проводов линии представляет значительные трудности.
В этих случаях упрощения достигаются благодаря применению метода взаимного преобразования звезды и треугольника.
На рис. 21.5 приемник энергии соединен треугольником. С учетом сопротивлений проводов линии () расчет такой цепи удобно выполнить, заменив треугольник сопротивлений эквивалентной звездой. Общее сопротивление фазы определяется сложением сопротивлений проводов линии и эквивалентной звезды приемника.
Если в ходе расчета схемы со смешанным соединением приемников — звездой и треугольником (рис. 21.6) — необходимо определить общее сопротивление фазы, это делается преобразованием звезды в треугольник или треугольника в звезду.
При симметричной нагрузке можно преобразовать треугольник в звезду, а затем две звезды заменить одной. Последняя операция возможна только при симметричной нагрузке, когда фазные напряжения у этих «звезд» одинаковы (смещение нейтрали отсутствует). При несимметричной нагрузке звезду следует преобразовать в эквивалентный треугольник, а затем сложением соответствующих проводимостей определить общую проводимость каждой фазы.
Рис. 21.6. к расчету трехфазной цепи при соединении приемников звездой и треугольником
Если в последнем случае требуется учесть сопротивление проводов, то общий треугольник еще раз приходится преобразовать в звезду и к сопротивлениям звезды прибавить сопротивления проводов линии.
Задача 21.4.
Сопротивления фаз приемника подключены треугольником к трехфазному генератору, обмотки которого также соединены треугольником. Действующие значения симметричной системы э. д. с. генератора 220 В. Пренебрегая сопротивлениями линейных проводов и обмоток генератора, определить фазные и линейные токи, активную, реактивную и полную мощности каждой фазы и всей цепи. Построить векторную диаграмму.
Решение. Схема рис. 20.8, а соответствует условию задачи. Если сопротивления линейных проводов и обмоток генератора считать равными нулю, то фазные напряжения приемника равны соответствующим э. д. с.:
Фазные токи в приемнике:
Линейные токи:
Сумма линейных токов
Равенство нулю суммы линейных токов является общим свойством трехфазных трехпроводных цепей при соединении звездой и треугольником при симметричной и несимметричной нагрузках.
Рис. 21.7. К задаче 21.4
Рис. 21.8. К задаче 21.5
Мощности фаз:
Общая мощность системы:
активная
реактивная
Векторная диаграмма построена на рис. 21.7.
Задача 21.5.
Приемник электрической энергии, соединенный треугольником, включен в сеть с линейным напряжением 120 В. Сопротивления фаз: (инд.); (емк.).
Начертить схему по условию задачи. Определить фазные и линейные токи, активную, реактивную и полную мощности в каждой фазе и всей цени. Построить векторную диаграмму.
Решение. Схема цепи изображена на рис. 21.8, а.
Решим задачу без применения комплексных чисел. Токи в фазах:
Линейные токи определим графически с помощью векторной диаграммы. Для этого найдем активные и реактивные токи фаз.
В фазе АВ включено активное сопротивление, поэтому
В фазе ВС последовательно соединены R и ХL, поэтому
В фазе CA включено емкостное сопротивление, следовательно,
Векторная диаграмма цепи показана на рис. 21.8, б. Для определения линейных токов постройте векторную диаграмму на листе миллиметровой бумаги в масштабах:
Линейные токи:
Мощности фаз:
активные
реактивные
полные
Мощность всей цепи:
активная
реактивная
Знак минус указывает на емкостный характер реактивной мощности цепи.
Симметричные составляющие несимметричной трехфазной системы
Несимметричную трехфазную систему токов (напряжений или других синусоидальных величин) можно представить в виде суммы трех симметричных систем.
Разложение несимметричной системы векторов на симметричные составляющие применяется для расчета и анализа несимметричных режимов в трехфазных цепях: при симметричной нагрузке, но несимметричной системе э. д. с., при однофазных и двухфазных коротких замыканиях, при обрыве линейных проводов в цепях с симметричной системой э. д. с.
Комплексы симметричных составляющих
Первая симметричная система имеет прямую последовательность фаз ( рис. 21.9, а), вторая — обратную ( рис. 21.9, б). Третья система, называемая системой нулевой последовательности, состоит из трех равных величин, совпадающих по фазе ( рис. 21.9, в).
Рис. 21.9. Симметричные составляющие несимметричной системы
Система величин:
прямой последовательности
обратной последовательности
нулевой последовательности
Умножение на означает поворот вектора на 120″ против движения часовой стрелки. Обозначим через а и будем называть это выражение поворотным множителем.
Поворот вектора против часовой стрелки на 240° можно выразить умножением его на а 2 .
Умножение вектора на а 3 не меняет его положения:
С помощью поворотного множителя а системы прямой и обратной последовательности можно записать так:
Сумма синусоидальных величин симметричной системы равна нулю, поэтому
Разложение несимметричной системы на симметричные составляющие
Выразим комплексы несимметричной системы через симметричные составляющие:
Если из этой системы уравнений можно однозначно определить симметричные составляющие через известные величины несимметричной системы, то этим будет доказана возможность разложения несимметричной системы на три симметричные — прямой, обратной и нулевой последовательности.
Используя выражения (21.10), запишем систему уравнений (21.12) в таком виде:
Решение системы уравнений (21.13) позволяет найти симметричные составляющие
Сложим уравнения:
Учитывая формулу (21.11), найдем
Умножим второе уравнение в системе (21.13) на , а третье — на и сложим все уравнения:
откуда
Умножим второе уравнение в системе (21.13) на , а третье на и сложим все уравнения:
= + +
+ + = (1 + + ) + • 3 + (1 + + )
откуда
= (21.16)
Свойства трехфазных цепей
Отметим некоторые свойства трехфазных цепей в отношении симметричных составляющих токов и напряжений.
Степень несимметрии линейных напряжений оценивается коэффициентом несимметрии, т.е. отношением составляющей обратной последовательности напряжений к составляющей прямой последовательности.
ε = 100 • Uоп/Uпп.
Отсюда следует, что ток в нулевом проводе можно найти, если утроить величину составляющей тока нулевой последовательности.
В трехпроводной системе сумма линейных токов равна нулю. Из формулы (21.14) следует, что линейные токи в этом случае не содержат составляющей нулевой последовательности. Это справедливо и для линейных напряжений трехфазной системы, сумма которых тоже равна нулю.
Рис. 21.10. Симметричные составляющие токов трехфазной цепи при разомкнутых двух фазах
Отсутствие тока в одной или двух фазах при несимметричном режиме означает, что сумма трех симметричных составляющих токов в этих фазах равна нулю.
Например, на схеме рис. 21.10, а фазы В и С разомкнуты. Поэтому
Согласно формулам (21.14) — (21.16), симметричные составляющие токов имеют следующие выражения:
прямой последовательности
обратной последовательности
нулевой последовательности
На рис. 21.10, б показаны симметричные составляющие прямой, обратной и нулевой последовательности и их геометрическое сложение; в результате сложения получаем:
Задача 21.8.
В результате неправильной маркировки концов обмоток трехфазного трансформатора (начало фазы А вторичной обмотки помечено как конец) система линейных напряжений несимметрична. Определить симметричные составляющие линейных напряжений при соединении звездой, если фазные напряжения во вторичной обмотке 220 В.
Решение. Запишем комплексы фазных напряжений во вторичной обмотке:
Вектор напряжения в соответствии с условием задачи повернут на 180°.
Комплексы линейных напряжений:
Составляющие:
нулевой последовательности
прямой последовательности
обратной последовательности
Рис. 21.11. К задаче 21.8
На рис. 21.11, а, б показаны векторы систем прямой и обратной последовательности и их сумма — система трех исходных векторов линейных напряжений.
Задача 21.9.
Трехфазный электродвигатель, включенный в сеть с линейным напряжением 380 В при соединении звездой, имеет мощность на валу Р2 = 14 кВт; соsφ = 0,8; к. п. д. η = 0,85.
Определить симметричные составляющие токов в обмотке двигателя при обрыве линейного провода в фазе В.
Решение. При нормальной работе ток в фазе двигателя
При симметричной системе напряжений токи в фазах двигателя образуют симметричную систему (рис. 21.12, а). При обрыве линейного провода В векторная диаграмма фазных напряжений и токов показана на рис. 21.12, б.
Ток в фазах В равен нулю (IB = 0).
Токи в фазах А и С равны по величине, но находятся в противофазе: IА = IC.
Для определения величины токов IА и IC найдем расчетное сопротивление фазы двигателя при нормальном режиме, которое будем считать неизменным:
При обрыве линейного провода фазы В обмотки двух других фаз двигателя с одинаковым сопротивлением включены последовательно на линейное напряжение UCA. Поэтому ток в фазах А и С
Рис. 21.12. к задаче 21.9
Выразим токи в комплексной форме, полагая ток IA совпадающим с положительным направлением действительной оси:
Токи:
нулевой последовательности
прямой последовательности
обратной последовательности
На рис. 21.12, в изображены симметричные составляющие токов в двигателе при обрыве фазы.
Несимметричный режим работы трехфазной цепи
Несимметрия в трехфазной цепи может быть вызвана различными причинами: 1) неодинаковым сопротивлением фаз (несимметричная нагрузка); 2) несимметричным коротким замыканием (например, между двумя фазами или фазой и нейтралью); 3) размыканием фазы; 4) неравенством э. д. с. и т. п.
Расчет токов и напряжений в трехфазной цепи при несимметричном режиме может производиться теми же
методами, которые применяются для расчета однофазных цепей.
Рассмотрим несколько простейших вариантов (без взаимной индукции между фазами).
1. Несимметричная трехфазная цепь, соединенная звездой, с нейтральным проводом (рис. 12-13).
Несимметричная трехфазная цепь, показанная на рис. 12-13, может рассматриваться как трехконтурная цепь с тремя э. д. с. Такая цепь может быть рассчитана методами контурных токов, узловых напряжений и другими. Поскольку в схеме имеются только два узла, наиболее целесообразно в данном случае определить узловое напряжение (напряжение смещения) между нейтральными точками N’ и N по формуле,
где — проводимости соответствующих ветвей.
После этого найдем токи:
В симметричной трехфазной цепи и поэтому при узловое напряжение равно нулю.
Стучаю размыкания какой-либо фазы или нейтрального провода соответствует равенство нулю проводимости данной фазы или нейтрального провода. j
При отсутствии нейтрального провода, полагая в (12-1), имеем:
2. Несимметричная трехфазная нагрузка, соединенная звездой (без нейтрального провода), с заданными линейными напряжениями на выводах (рис. 12-14).
Если заданы линейные напряженияна выводах нагрузки, соединенной звездой, то токи в фазах звезды определяются следующим образом.
Обозначив фазные напряжения на выводах нагрузки через(рис. 12-14), получим
где — проводимости фаз нагрузки.
Равенство нулю суммы токов трех фаз записывается в виде:
Фазные напряжения могут быть выражены через и заданные линейные напряжения:
Подстановка (12-3) в (12-2) дает:
Круговой заменой индексов (с порядком следования АВСА и т. д.) находятся:
По фазным напряжениям нагрузки находятся фазные токи.
В Случае симметричной нагрузки вектор фазного напряжения равен одной трети диагонали параллелограмма, построенного на соответствующих линейных напряжениях. Фазные напряжения в этом случае определяются векторами, соединяющими центр тяжести треугольника напряжений (точка пересечения медиан) с вершинами треугольника.
На рис. 12-15 построение сделано для фазы А по формуле (12-4)1
В качестве примера рассмотрим схему фазоуказателя, используемую для определения чередования фаз по времени, состоящую из конденсатора и двух одинаковых электрических ламп, соединенных звездой.
Положим, что конденсатор присоединен к фазе А, лампы — к фазам В и С; емкостное сопротивление конденсатора берется равным по модулю сопротивлению лампы, т. е. причем
Неравенство напряжений на лампах проявится в том, что накал ламп будет разным.
1 Для определения чередования фаз на практике обычно пользуются специальным прибором, в котором создается вращающееся магнитное поле, увлекающее за собой диск в ту или другую сторону.
Отношение напряжений согласно выведенным выше выражениям (12-4) равно при симметрии линейных напряжений:
Следовательно, лампа, присоединенная к фазе В (т. е. к фазе, опережающей ту, к которой присоединена вторая лампа), будет светить ярко, а лампа, присоединенная к отстающей фазе, — тускло.
Вместо конденсатора можно применить индуктивную катушку, подобрав ее индуктивное сопротивление приблизительно равным по модулю сопротивлению лампы. В этом случае ярче будет светить лампа, присоединенная к отстающей фазе. Эти соотношения также могут быть получены непосредственно из векторной диаграммы.
3. Несимметричная трехфазная нагрузка, соединенная треугольником, с заданными напряжениями на выводах Рис. 12-16. Несимметричная (рис. 12-16). Если на выводах несимметричной трехфазной нагрузки, соединенной треугольником, заданы линейные напряжения (рис. 12-16), то токи в сопротивлениях нагрузки равны:
Токи в линии определяются как разности соответствующих токов нагрузки, например: и т. д.
Если на выводах несимметричной трехфазной нагрузки, соединенной треугольником, заданы фазные напряжения источника, соединенного в звезду, то линейные напряжения на выводах нагрузки находятся как разности соответствующих фазных напряжений, в результате чего задача сводится к только что рассмотренному случаю(рис. 12-16).
Пример 12-2. Сопротивления фаз нагрузки, соединенной звездной
Сопротивление нейтрального провода
Напряжения на цепи представляют собой симметричную звезду:
Требуется определить фазные напряжения нагрузки.
Проводимости фаз нагрузки и нейтрального провода
На основании формулы (12-1)
Искомые фазные напряжения нагрузки:
Мощность несимметричной трехфазной цепи
Пользуясь комплексной формой записи мощности, можно написать общее выражение для мощности трехфазной цепи:
Действительная часть этого выражения представляет собой активную мощность
Суммарная активная мощность, потребляемая несимметричной трехфазной цепью, может быть в соответствии с этим измерена при помощи трех ваттметров, включенных на подведенные к данной цепи фазные напряжения относительно нейтрали и одноименные с ними токи. Активная мощность равна сумме показаний трех ваттметров. Такой метод измерения применяется при наличии нейтрального провода (рис. 12-17) или искусственно созданной нейтральной точки.
В случае отсутствия нейтрального провода измерение может быть произведено с помощью двух ваттметров
(рис. 12-18). В этом случае выражение (12-5) преобразуется следующим образом: исключая ток с помощью условия
получаем:
или
В соответствии с (12-6) при измерении активной мощности двумя ваттметрами к одному из них подводятся напряжение и ток а ко второму — напряжение и ток (рис. 12-18, а). Показания ваттметров складываются алгебраически.
Круговой заменой А, В. и С в выражении (12-6) можно получить выражения для других равноценных вариантов включения двух ваттметров.
Следует иметь в виду’, что если стрелка одного ваттметра отклоняется по шкале в обратную сторону, то, изменив направление напряжения или тока, подводимого к данному ваттметру, записывают полученное показание со знаком минус. При симметричном режиме работы трехфазной цепи такое положение имеет место при
что видно непосредственно из векторной диаграммы (рис. 12-18, б).
При симметричном режиме показания двух ваттметров в схеме рис. 12-18, б будут следующие:
Сумма и разность показаний ваттметров соответственно равны:
Следовательно, при симметричном режиме работы трехфазной цепи тангенс угла сдвига фаз может быть вычислен по формуле
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Вращающееся магнитное поле
- Электрические цепи синусоидального тока
- Электрические цепи несинусоидального тока
- Несинусоидальный ток
- Метод симметричных составляющих
- Цепи периодического несинусоидального тока
- Резонанс токов
- Трехфазные симметричные цепи
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
🌟 Видео
Несимметричная нагрузка. Схема соединения "треугольник"Скачать
Что такое звезда и треугольник в трансформатореСкачать
Виды заземления нейтралиСкачать
Реактивная мощность за 5 минут простыми словами. Четкий #энерголикбезСкачать
Трансформаторы напряженияСкачать
Фильтрация токов НП через “треугольник” ТТСкачать
ЧЕМ НЕЙТРАЛЬ ОТЛИЧАЕТСЯ ОТ ЗАЗЕМЛЕНИЯ И ФАЗЫ? ОБЪЯСНЯЮ В АНИМАЦИИ #фаза #ноль #заземлениеСкачать
Фазировка трансформатора "треугольник"/ "звезда".Скачать
Соединение трехфазных цепей звездой и треугольникомСкачать
Трехфазные цепи - Задача 1. Расчет трехфазной цепи соединенной звездойСкачать
Трехфазные электрические цепи │Теория ч. 1Скачать
Направленная защита от замыканий на землюСкачать
Три фазы: откуда потенциал на нуле и чем опасен его обрыв.Скачать
Трехфазные электрические цепи │Теория ч. 2Скачать
КАК ТРИ ФАЗЫ "СЛИТЬ" В ОДНУ? Показываю ТРИ способа! #энерголикбезСкачать