Наибольшая средняя линия треугольника

Решение №1019 Катеты прямоугольного треугольника равны 16 и 30.

Катеты прямоугольного треугольника равны 16 и 30. Найдите наибольшую среднюю линию треугольника.

Наибольшая средняя линия треугольника

Наибольшая средняя линия треугольника

Наибольшая средняя линия треугольника будет, параллельна большей стороне, т.е. гипотенузе, найдём её:

х 2 = 16 2 + 30 2
х 2 = 256 + 900 = 1156
х = √1156 = 34

Средняя линия равна половине параллельного ей основания:

34/2 = 17

Ответ: 17.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 1

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.

Видео:Средняя линия. Теорема о средней линии треугольникаСкачать

Средняя линия. Теорема о средней линии треугольника

Средняя линия треугольника — свойства, признаки и формулы

Одним из важных понятий, с помощью которого легко решается целый класс задач по геометрии, является средняя линия треугольника.

Разберём данное понятие, рассмотрим свойства, и научимся правильно решать задачи на эту тему.

Видео:Средняя линия треугольника и трапеции. 8 класс.Скачать

Средняя линия треугольника и трапеции. 8 класс.

Определение и признаки средней линии треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется его средней линией.

Наибольшая средняя линия треугольника

Отрезок, у которого один из концов совпадает с серединой одной из сторон, другой находится на второй стороне, проведённый параллельно третьей стороне, является средней линией треугольника.

Доказательство следует из теоремы Фалеса.

Наибольшая средняя линия треугольника

Видео:8 класс, 25 урок, Средняя линия треугольникаСкачать

8 класс, 25 урок, Средняя линия треугольника

Теорема о средней линии треугольника

Средняя линия треугольника параллельна основанию (третьей стороне) и равна её половине.

Существует три вида доказательств этого положения. Каждое из них базируется на одной из ключевых позиций планиметрии.

Пусть дан треугольник ABC, M – середина стороны AB, N – середина BC.

По определению, MN – средняя линия ΔABC.

Наибольшая средняя линия треугольника

Необходимо доказать, что MN II AC, MN = ½AC.

Доказательства

Пусть прямая MK II AC. Тогда по теореме Фалеса MK пересекает сторону BC в её середине. В этом случае отрезок MN лежит на прямой MK.

Следовательно, MN II AC.

Наибольшая средняя линия треугольника

Тогда NP – средняя линия по теореме Фалеса, то есть AP = PC.

Так как AMNP – параллелограмм по определению, то AP = MN. Из этого и предыдущего утверждения следует, что длина MN равна ½AC.

Рассматриваются треугольники MBN и ABC. В них угол B является общим,

Наибольшая средняя линия треугольника

По второму признаку подобия треугольников ΔMBN ∼ ΔABC. Следовательно, углы BMN и BAC равны.

Поскольку эти углы являются соответственными, то прямые MN и AC параллельны.

Формула MN = ½AC следует из условий

Наибольшая средняя линия треугольника

поскольку пропорциональность двух пар сторон влечёт соответствующее отношение для третьей пары сторон.

Рассматривается сумма векторов

Наибольшая средняя линия треугольника

Поскольку в результате образуется замкнутая ломаная, то

Наибольшая средняя линия треугольника

Отсюда следует, что

Наибольшая средняя линия треугольника

Наибольшая средняя линия треугольника

Наибольшая средняя линия треугольника

Наибольшая средняя линия треугольника

Из последнего равенства следуют условия теоремы.

Видео:Теорема о средней линии треугольника. Доказательство. 8 класс.Скачать

Теорема о средней линии треугольника. Доказательство. 8 класс.

Следствия из теоремы с доказательствами

Следствие №1

Средняя линия отсекает треугольник, подобный данному, с коэффициентом подобия ½ и площадью, составляющий ¼ площади заданного треугольника.

Наибольшая средняя линия треугольника

По определению стороны AB и BC делятся пополам, поэтому

Наибольшая средняя линия треугольника

Наибольшая средняя линия треугольника

Из третьего признака подобия вытекает рассматриваемое свойство.

Поскольку площади подобных фигур относятся как квадрат коэффициента подобия, то получается вторая часть свойства, то есть площадь маленького треугольника относится к площади большого как

Наибольшая средняя линия треугольника

Следствие №2

Наибольшая средняя линия треугольника

Поскольку MN – средняя линия, то MN II AC, поэтому ∠BMN = ∠BAP, ∠BNM = ∠BCA как соответственные при MN II AC и секущей AB или BC соответственно.

Поскольку MP – средняя линия, то MP II BC, поэтому ∠MPA = ∠BCA как соответственные при MP II BC и секущей AC.

Таким образом: ∠BNM = ∠BCA = ∠MPA.

Так как MN – средняя линия, то сторона MN = ½AC, поэтому MN = AP.

Следовательно, ΔAMP = ΔMBN по второму признаку равенства треугольников.

Равенство остальных пар треугольников доказывается аналогично.

По основному свойству ΔMBN ∼ ΔABC с коэффициентом подобия ½. Так как все полученные маленькие треугольники равны между собой, то каждый из них, следовательно, подобен большому с тем же коэффициентом.

Видео:Теорема о средней линии треугольникаСкачать

Теорема о средней линии треугольника

Свойства средней линии треугольника

Теорема и следствия из неё составляют основные свойства средней линии треугольника.

Наибольшая средняя линия треугольника

Согласно второму утверждению, вид большого треугольника такой же, как и у маленьких. То есть для равностороннего и равнобедренного треугольников средние линии отсекают равносторонние и равнобедренные треугольники.

Высоты тупоугольного треугольника, проведённые к тупому углу из вершин острых, располагаются вне треугольника. Поэтому часто рассматривают не саму среднюю линию, а её продолжение. Учитывая подобие получаемых фигур, можно утверждать, что точкой пересечения с продолжением средней линии высота делится на две равные части.

Биссектриса угла треугольника точкой пересечения со средней линией также делится пополам.

Видео:МАТЕМАТИКА | Средняя линия треугольникаСкачать

МАТЕМАТИКА | Средняя линия треугольника

Средняя линия прямоугольного треугольника

Для прямоугольного треугольника две средние линии перпендикулярны катетам, а третья равна медиане, проведённой к гипотенузе.

Наибольшая средняя линия треугольника

Остроугольный разносторонний треугольник не имеет средних линий, обладающих подобными характеристиками.

Видео:Средняя линия треугольника – 8 класс геометрияСкачать

Средняя линия треугольника – 8 класс геометрия

Пример решения задачи

Наибольшая средняя линия треугольника

Доказать, что середины сторон произвольного выпуклого четырёхугольника являются вершинами параллелограмма.

Проводя диагональ четырёхугольника, получают разбиение на два треугольника, в каждом из которых построена средняя линия, параллельная по основной теореме диагонали, как основанию.

Так как две прямые, параллельные третьей, параллельны между собой, то противолежащие стороны образованного средними линиями четырёхугольника параллельны.

Аналогично доказывается параллельность двух других сторон нового четырёхугольника. По определению четырёхугольник, полученный соединением середин сторон заданного четырёхугольника, является параллелограммом.

Видео:64. Средняя линия треугольникаСкачать

64. Средняя линия треугольника

Что такое средняя линия треугольника

В данной публикации мы рассмотрим определение, свойства и признак средней линии треугольника, а также разберем пример решения задачи для лучшего понимания теоретического материала.

Видео:Средняя линия треугольника | Геометрия 7-9 класс #62 | ИнфоурокСкачать

Средняя линия треугольника  | Геометрия 7-9 класс #62 | Инфоурок

Определение средней линии треугольника

Отрезок, который соединяет середины двух сторон треугольника, называется его средней линией.

Наибольшая средняя линия треугольника

  • KL – средняя линия треугольника ABC
  • K – середина стороны AB: AK = KB
  • L – середина стороны BC: BL = LC

Видео:Найди длину средней линии | Подготовка к ОГЭСкачать

Найди длину средней линии | Подготовка к ОГЭ

Свойства средней линии треугольника

Свойство 1

Средняя линия треугольника параллельна одной из его сторон (которую не пересекает) и в два раза меньше этой стороны.

На рисунке выше:

Свойство 2

Средняя линия треугольника отсекает от него подобный треугольник (в соотношении 1:2), площадь которого в 4 раза меньше исходного.

На рисунке выше:

  • △KBL ∼ △ABC (подобие по пропорциональности всех сторон)
  • Стороны △KBL в два раза меньше соответствующих сторон △ABC:
    AB = 2KB, BC = 2BL, AC = 2KL
    .
  • S△ABC = 4 ⋅ S△KBL

Свойство 3

В любом треугольнике можно провести три средние линии.

Наибольшая средняя линия треугольника

KL, KM и ML – средние линии треугольника ABC.

Свойство 4

Три средние линии треугольника делят его на 4 равных по площади треугольника.

Наибольшая средняя линия треугольника

Видео:Средняя линия треугольника. Видеоурок 13. Геометрия 8 класс.Скачать

Средняя линия треугольника. Видеоурок 13. Геометрия 8 класс.

Признак средней линии треугольника

Отрезок, проходящий через середину одной из сторон треугольника, пресекающий вторую и параллельный третьей стороне, является средней линией этого треугольника.

Видео:СРЕДНЯЯ ЛИНИЯ ТРЕУГОЛЬНИКА 8 класс Атанасян геометрияСкачать

СРЕДНЯЯ ЛИНИЯ ТРЕУГОЛЬНИКА 8 класс Атанасян геометрия

Пример задачи

Дан треугольник, две стороны которого равны 6 и 8 см. Найдите длину средней линии, соединяющей эти стороны.

Треугольник с заданными сторонами является прямоугольным, причем известные значения – это длины катетов. Средняя линия, которая соединяет катеты, параллельна гипотенузе и равна половине ее длины.

Наибольшая средняя линия треугольника

Мы можем найти гипотенузу, воспользовавшись теоремой Пифагора.

BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
BC = 10.

Таким образом, средняя линия LM = 1 /2 ⋅ BC = 1 /2 ⋅ 10 = 5.

💡 Видео

Геометрия 8. Урок 7 - Средняя линия треугольника и трапецииСкачать

Геометрия 8. Урок 7 - Средняя линия треугольника и трапеции

Геометрия 8. Средняя линия трапеции. Средняя линия треугольника. Задачи.Скачать

Геометрия 8. Средняя линия трапеции. Средняя линия треугольника. Задачи.

Задание 3 ЕГЭ по математике. Урок 41Скачать

Задание 3 ЕГЭ по математике. Урок 41

Урок 32. Средняя линия треугольника (8 класс).mp4Скачать

Урок 32. Средняя линия треугольника (8 класс).mp4

Геометрия 8 класс (Урок№16 - Средняя линия треугольников и трапеции.)Скачать

Геометрия 8 класс (Урок№16 - Средняя линия треугольников и трапеции.)

Средняя линия треугольника. Задачи по готовым чертежамСкачать

Средняя линия треугольника. Задачи по готовым чертежам

МЕРЗЛЯК-8 ГЕОМЕТРИЯ. СРЕДНЯЯ ЛИНИЯ ТРЕУГОЛЬНИКА. ПАРАГРАФ-7 ТЕОРИЯСкачать

МЕРЗЛЯК-8 ГЕОМЕТРИЯ. СРЕДНЯЯ ЛИНИЯ ТРЕУГОЛЬНИКА. ПАРАГРАФ-7 ТЕОРИЯ

Средняя линия треугольника и трапеции | МатематикаСкачать

Средняя линия треугольника и трапеции | Математика
Поделиться или сохранить к себе: